Rayat Shikshan Sanstha's Karmaveer Bhaurao Patil College Vashi [Autonomous College] Syllabus (CBCGS Pattern)

Sr.		
No.	Heading	Particulars
1	Title of Course	T.Y.B.Sc. Microbiology
2	Eligibility for Admission	S.Y.B.Sc. Microbiology
		[of recognized Boards]
3	Passing Marks	40%
4	Ordinances/Regulations	
	(if any)	-
5	No. of Years/Semesters	One year/Two semester
6	Level	U.G.
7	Pattern	Semester
8	Status	Revised
9	Implemented from	2020-2021
	Academic year	

AC-04/04/2020 Item No-5.16

Rayat Shikshan Sanstha's KARMAVEER BHAURAO PATIL COLLEGE VASHI (AUTONOMOUS COLLEGE)

Sector-15- A, Vashi, Navi Mumbai - 400 703

Syllabus for T.Y.B.Sc. Microbiology

Program: B.Sc. Microbiology

Course: Microbiology

(Choice Based Credit, Grading and Semester System with effect from the academic year 2020-2021)

Preamble

Bachelor of Science (B.Sc.) in Microbiology is an under graduate program of Department of Microbiology, Karmaveer Bhaurao Patil College Vashi, Navi Mumbai [Autonomous College]

Microbiology is a branch of science that studies microorganisms such as bacteria, protozoa, algae, fungi, bacteria, viruses, etc. These studies integrate cytology, physiology, ecology, genetics and molecular biology, evolution, taxonomy and systematics with a focus on microorganisms.

The relevance and applications of microorganisms to the surrounding environment including human life and Mother Nature becomes part of this branch. Since inception of this branch of science, Microbiology has remained a field of active research and ever expanding in all possible directions; broadly categorized as pure and applied science.

Different branches of Pure Microbiology based on taxonomy are Bacteriology, Mycology, Protozoology and Parasitology, Phycology and Virology; with considerable overlap between these specific branches over each other and also with other disciplines of life sciences, like Biochemistry, Botany, Zoology, Cell Biology, Biotechnology, Nanotechnology, Bioinformatics, etc.

Areas in the applied Microbial Sciences can be identified as: Genetics, Medical, Immunology, Biochemistry, Biotechnology, Pharmaceutical, Industrial (Fermentation, Pollution Control), Air, Water, Food and Dairy, Agriculture (Plant Pathology and Soil Microbiology), Veterinary, Environmental (Ecology, Geomicrobiology); and the technological aspects of these areas.

Microbiological tools have been extensively used to study different life processes and are cutting edge technologies. There is a continual demand for microbiologists in the work force – education, industry and research. Career opportunities for the graduate students are available in manufacturing industry and research institutes at technical level. The content of a syllabus should be such that it maintains continuity with the course content of higher secondary class and post graduate course. The present curriculum is made keeping this in mind and is an effort to impart fundamental

knowledge of the subject needed at this level. The curriculum is designed as per the guidelines for Choice Based Credit System and reflects the total credit, teaching hours and evaluation pattern.

Objectives of the Course:

- ✓ To enrich students' knowledge and train them in the pure microbial sciences
- ✓ To introduce the concepts of application and research in Microbiology
- ✓ To inculcate sense of scientific responsibilities and social and environment awareness
- ✓ To help students' build-up a progressive and successful career

Program Outcomes (POs)

PO-1	Disciplinary Knowledge:
	(i) Acquire the knowledge with facts and figures related to various subjects in pure sciences such as Physics, Chemistry, Mathematics, Microbiology and Computer Science; and Biotechnology, Information Technology and itsother fields related to the program.
	(ii) Understand the basic concepts, fundamental principles, theoretical formulations and experimental findings and the scientific theories related to various scientific phenomena and their relevance in the day-to-day life.
PO-2	Communication Skills: Develope various communication skills such as reading, listening and speaking skills etc., which we will help in expressing ideas and views clearly and effectively.
PO-3	Critical Thinking: Think creatively to propose novel ideas in explaining the scientific data, facts and figures related to science and technology.
PO-4	Analytical Reasoning and Problem Solving: Identify, describe, formulate, interpret, analyze the data systematically and solve theoretical and numerical problems in the diverse areas of science and technology and provide alternate solutions to the problems.
PO-5	Sense of Inquiry: Curious for asking relevant questions like why and how for better understanding of the basic concepts, fundamental principles, scientific theories and applications related to the study.
PO-6	Use of Modern Tools: Use of modern tools, equipments, instrumentation and laboratory techniques to design and perform the experiments and write the programs in different languages (software).
PO-7	Research Skills: Ability to search for, find, collect, analyze, interpret and evaluate information/data that is relevant to the subjects related to science and technology being studied.
PO-8	Application of Knowledge: Develop scientific outlook with respect to the subjects related to science and technology and also participate in various social and cultural activities.
PO-9	Ethical Awareness: Imbibe ethical and social values in personal and social life leading to cultured and civilized personality.
PO-10	Teamwork: Work effectively within the groups and individuals, participate and take initiative for various field-based situations related to science, technology and society at large.
PO-11	Environment and Sustainability: Understand how development in science and technology and interdisciplinary subjects are taking place for protecting our environment and sustainable developments.
PO-12	Lifelong Learning: Ability of self-driven to explore, learn and gain knowledge and new skills to improve the quality of life and sense of self-worth by paying attention to the ideas and goals throughout the life.

Program Specific Outcomes [PSO's]: UG

- **PSO_1**: Understand the various aspects of microbial world and history of microbiology
- **PSO_2**: Differentiate and classify different types of microorganism and its characteristics
- **PSO_3**: Distinguish between Prokaryotes and Eukaryotes with respective to their ultra-structure and functions
- **PSO_4**: Understand & differentiate the requirement of nutrients and environmental conditions for the growth of microorganisms
- **PSO_5**: Apply the knowledge of basic instrumentation, basic techniques in microbiology and control of microorganism
- **PSO_6**: Explain and describe types and functions of different biomolecules found in living cells
- **PSO_7**: Describe the aspects of microbial ecology and industrial microbiology
- **PSO_8**: Illustrate the basic immunology and medical microbiology

T.Y.B.Sc. Microbiology: Curriculum Revised for Credit Based Semester & Grading System To be implemented from the academic year 2020-2021 SEMESTER V

Theory:

COURSE CODE	UNIT	TOPIC HEADINGS	Credits	NH/ week
	Unit I	DNA Replication		
UGMB501	Unit II	Gene Expression and Regulation		
Microbial Genetics -I	Unit III	Mutations and Repair	4	4
	Unit IV	Natural Plasmids, Transposable elements & Integrons, Genetic Research		

COURSE CODE		TOPIC HEADINGS	Credits	NH/
000152 0022	UNIT	1 01 10 111112 11 (02	Credits	week
UGMB502	Unit I	Medical Microbiology		
Medical	Unit II	Study of diseases	4	4
Microbiology and	Unit III	General Immunology	7	•
Immunology I	Unit IV	Activation of Immune cells		

COURSE CODE	UNIT	TOPIC HEADINGS	Credits	NH/
				week
	Unit I	Biological Membranes & Transport		
UGMB503	Unit II	Bioenergetics & Quorum Sensing		
Microbial	Unit III	Methods of Studying Metabolism &	4	4
Biochemistry-I		Catabolism of Carbohydrates		
	Unit IV	Fermentative Pathway & Anabolism of		
	Omt I v	Carbohydrates		

COURSE CODE	UNIT	TOPIC HEADINGS	Credits	NH/ week
UGMB504 Industrial	Unit I	Screening For Productive Strains And Strain Improvements		
Microbiology and Bioprocess	Unit II	Nutrition Of Industrial Microorganisms And Sterilization Methods	4	4
Technology	Unit III	Fermentation Equipment And Control		
	Unit IV	Traditional Fermentations		

PRACTICAL:

COURSE CODE	PAPER	TOPIC HEADINGS	Credits	NH/ week
	I	Microbial Genetics		
UGMBP501	П	Medical Microbiology and Immunology		
	III	Microbial Biochemistry-I	6	16
	IV	Industrial Microbiology and Bioprocess Technology		

UGMB501 Microbial Genetics – I

Course Outcome: Paper I

By the end of the course, a student should develop the ability to

CO1: Describe roles of all the enzymes and proteins involved in DNA replication.[2]*

CO2: Compare and contrast between Prokaryotic and Eukaryotic DNA replication.[4]*

CO3: Forecast effect of Mutations on gene expression and regulation.[6]*

CO4: Compare & contrast between Composite and Non-composite Transposons, IS elements and Transposons.[4]*

CO5: Solve analytical problems on Genetics.[4]*

CO6: Perform mutation experiments by UV survival curve and identify it by performing Gradient Plate Technique. [3]*

*Note: [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analyzing, [5]: Evaluating, [6]: Creating

	SEMESTER V Paper I	
Course	Title	Credits
Code		
UGMB501	Microbial Genetics - I	4 Credits
		(60 Lectures)
Unit I	DNA Replication	(15 Notional
	Three models of DNA Replication	Hours)
	Semiconservative Replication in prokaryotes: The	
	Meselson and Stahl Experiment	

	1	
	DNA replication in Prokaryotes- with special reference to <i>E. coli</i>	
	a. The J. Cairn Experimentb. Molecular Mechanism of DNA replication	
	Enzymology of DNA replication-	
	a. Helicases, DNA polymerases, ligase, topoisomerases.b. SSB proteins, Tus proteins	
	Rolling Circle replication	
	DNA replication in Eukaryotes- with special reference to Saccharomyces cerevisiae	
	 a. Semiconservative replication in eukaryotes- The Taylor, Woods & Hughes experiment b. Replicons c. Initiation of replication d. Eukaryotic replication enzymes e. Replicating the ends of chromosomes f. Assembling the newly replicated DNA 	
Unit II	Gene Expression and Regulation	(15 Notional
	2.1 The transcription process	Hours)
	2.2 Transcription in bacteria- Initiation, Elongation & Termination	
	2.3 Transcription in eukaryotes	
	 a. Eukaryotic RNA Polymerases b. Transcription by RNA Polymerase II c. The structure and production of eukaryotic mRNAs d. Splicing mechanisms- Self- splicing introns, The spliceosome e. RNA editing 	
	Translation	
	 a. tRNA b. Ribosomes c. Initiation of Translation d. Elongation of the polypeptide chain e. Termination of Translation 	
	f. Protein sorting	
	Regulation of gene expression in bacteria a) <i>Lac</i> operon of <i>E. coli</i> - Jacob and Monod's operon model, Positive control, molecular details of regulation	

Unit III	Mutations and Repair	(15 Notional
	Classification of Mutations:	Hours)
	a. Based on molecular change	
	b. Based on phenotypic effectsc. Based on location	
	c. Based on location	
	The Fluctuation Test	
	Spontaneous Mutations:	
	a. Replication errors	
	b. Tautomeric shifts	
	c. Depurination & deamination	
	d. Oxidative damage	
	e. Transposable elements	
	Induced Mutations:	
	a. Base analogs	
	b. Base- modifying agents	
	c. Intercalating agents	
	d. Adduct-Forming agents	
	e. Radiations- Ultraviolet light, Ionizing radiations	
	f. The Ames test	
	Reverting mutations, Suppression, Pleiotropic	
	mutations, mutator genes	
	Detecting mutations:	
	a. Visible mutants	
	b. Nutritional mutants	
	c. Conditional mutants	
	d. Resistance mutants	
	DNA repair mechanisms	
	a. Direct reversal repair- Proofreading,	
	Photoreactivation, repair of alkylation damage	
	b. Excision repair- Base excision repair,	
	Nucleotide excision repair, Methyl-directed	
	mismatch repair, SOS repair c. Double strand break repair in eukaryotes	
T124 TX7	·	(1 F N) (1 ·)
Unit IV	Natural Plasmids, Transposable elements & Integrons, Genetic Research	(15 Notional Hours)
	4.1 Natural Plasmids	110015)
	i. Physical nature of plasmids	
	ii. Detection and isolation of plasmids	
	iii. Replication of plasmids	
	iv. Plasmid copy number	
	v. Plasmid incompatibility vi. Plasmid amplification	
	vii. Types of plasmids- R- plasmids, F-plasmid, Col	
	711. 1 y pos or prasmus it prasmus, 1 -prasmu, cor	

plasmids, Degradative plasmids, Ti plasmids, plasmids encoding toxins & virulence

Transposable elements

- a. General features of transposable elements
- b. Transposable elements in bacteria- Insertion sequences, transposons [Composite & Noncomposite]
- c. IS elements & transposons in plasmids
- d. Bacteriophage µ
- e. Transposable elements in yeast- Ty
- f. The transposition machinery
- g. The transposition reaction- Replicative and non-replicative transposition
- h. The fate of the donor site
- i. Target immunity
- j. Transposons as molecular tools
- k. Retroposons
- 1. Retrotransposons

Integrons- Role in antibiotic resistance

Basic Concepts in Genetic Research

- a. The sub-disciplines of genetics
- b. Basic and applied research
- c. Genetic databases & maps
- d. Organisms for genetics research- Characteristics, examples, representative studies using prokaryotic and eukaryotic organisms

References for UGMB501

- 1. Peter J. Russell (2010), "Genetics-A molecular approach", 3rd ed.
- 2. Benjamin A. Pierce (2008), "Genetics a conceptual approach", 3rd ed., W. H. Freeman and company.
- 3. M.Madigan, J.Martinko, J.Parkar, (2012), "Brock Biology of microorganisms", 13th ed., Pearson Education International.
- 4. Prescott, Harley and Klein, "Microbiology", 7th edition Mc Graw Hill international edition.
- 5. Nancy Trun and Janine Trempy, (2004), "Fundamental bacterial genetics", Blackwell Publishing
- 6. Robert Weaver, (2008), "Molecular biology", , 3rd edn. Mc Graw Hill international edition.
- 7. Primrose and Twyman, (2001), "Principles of gene manipulation and genomics", 6th ed, Blackwell Publishing
- 8. Snustad, Simmons, "Principles of genetics", 3rd edn. John Wiley & sons, Inc.
- 9. Flint, Enquist, Racanillo and Skalka, "Principles of virology", 2nd edn. ASM press.

- 10. Benjamin Lewin, (9 th edition), "Genes IX", , Jones and Bartlett publishers.
- 11. JD Watson, "Molecular biology of the gene", 5th edn.

Practical based on UGMB501

Course code: UGMBP05/I

[Credits -1.5, Notional Hours- 60]

- 1. UV survival curve determination of exposure time leading to 90% reduction
- 2. Isolation of mutants using UV mutagenesis
- 3. Gradient Plate Technique
- 4. Replica plate technique for selection & characterization of mutants auxotroph & antibiotic resistant
- 5. Bacterial gene induction with reference to lac operon.
- 6. Genetics problems

UGMB502- Medical Microbiology and Immunology -I

Course Outcome: Paper II

By the end of the course, a student should develop the ability to

CO1: Justify the role of Quality Control in accurate diagnosis [5]*

CO2: Justify spread of Skin, Respiratory and Urinary tract infection & understanding clinical manifestation [5]*

CO3: Monitor the Prophylactic Measures to minimize risk of infection [4]*

CO4: Distinguish the organs of Immune system based on their structure and function [4]*

CO5: Attribute the mechanism of B-Cells and T-cells in Humoral and Cell Mediated Immune Response respectively [4]*

CO6: Study the characteristics of standard cultures to make diagnosis from patient sample [3]*

*Note: [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analyzing, [5]: Evaluating, [6]: Creating

	SEMESTER V Paper II	
Course	Title	Credits
Code		
UGMB502	Medical Microbiology and Immunology -I	4 Credits (60 Lectures)
Unit I	Attributes of microbial pathogenicity - a. Entry and Adherence	(15 Notional Hours)
	Strategy for survival a. Avoid, Circumvent, Subvert b. Manipulate normal host defences, getting into host cells, avoiding intracellular pitfalls	
	1.2 Establishment-overcoming host immune system.	
	Corollaries of microbial pathogenicity a. Exotoxins- b. Ras inhibitor and other toxin affecting host cell trafficking and signal transduction pathways Membrane active exotoxin a. Enzymes	

Bacterial Strategies for Evasion

Study of virulence mechanisms in bacteria

- a. Pathogenicity islands
- b. Bacterial virulence factors
- c. Adherence factors
- d. Invasion of host cells and tissues

Toxins

- a. Exotoxins
- b. Exotoxins associated with diarrheal diseases and food poisoning
- c. LPS of gram negative bacteria

Enzymes

- a. Tissue degrading enzymes
 - IgA1 proteases

Antiphagocytic factors

Intracellular pathogenicity

a. Antigenic heterogeneity. The requirement for iron

Typical diagnostic cycle -

- a. Specimen collection(direct and indirect, samples from normal flora sites, specimen for viral diagnosis, patient preparation, special instruction, transportation to lab., storage before processing, primary plating media, direct examination, Comments)
- b. Transport, Direct examination, microscopy
- c. Culture, isolation of viruses & detection, cytology & histology
- d. Serological identification, molecular biology techniques.
- e. Q.C. in diagnostics

Unit II

Study of diseases (Anatomy, Cultural characteristics of the etiological agent, pathogenesis & clinical features, laboratory diagnosis, treatment and prevention only)

(15 Notional Hours)

Skin Infections:

- a. Pathogenesis of mucocutaneous lesion (Only diagram)
- b. Skin manifestations of systemic infections caused by bacteria and fungi.

	Upper Respiratory Tract infection:	
	a. Common cold	
	b. Parotitis	
	c. Leprosy	
	d. Fungal (Candidiasis)	
	e. Viral (Herpex Simplex, Measles, Chicken pox)	
	f. Cutaneous dermatophytes	
	Lower Respiratory Tract infection:	
	a. Influenza	
	b. Tuberculosis	
	c. Whooping cough	
	c. Whooping cough	
	2.4 Urinary Tract infactions	
	2.4 Urinary Tract infections	
	a. Acquisition and Etiology	
	b. Predisposing factors	
	c. Pathogenesis and clinical manifestations	
	d. Lab diagnosis.	
	e. Prevention and treatment	
	Gastrointestinal tract infections: (Gastroenteritis,	
	Diarrhea, Dysentery, Enterocolitis)	
	a. Schematics of Gastrointestinal tract	
	b. Shigellosis	
	c. Cholera	
	d. Food poisoning- Staphylococcus	
	e. Rotavirus diarrhea	
	f. Dysentery due to <i>Entamoeba histolytica</i> - detail	
	g. Hepatitis A	
Unit III	General Immunology -I	(15 Notional
		Hours)
	3.1Organs and tissues of the immune system:	,
	a.Primary lymphoid organs - structure and function of	
	Thymus and Bone marrow	
	Thymus and Done marrow	
	b. Secondary lymphoid organs – structure and	
	function of Spleen, Lymph node, Mucosa	
	associated lymphoid tissues, Bronchus associated	
	lymphoid tissue, Gut associated lymphoid tissue,	
	Cutaneous associated lymphoid tissue	
	. Anticons	
	: Antigens	
	a. Immunogenicity versus antigenicity	
	b. Factors that influence immunogenicity -	
	b. Factors that influence immunogenicity – foreignness, molecular size, chemical,	
	foreignness, molecular size, chemical,	

	biological system to immunogenicity – genotype						
	of the recipient, animal, immunogen dosage, route						
	of administration and adjuvants						
	c. Epitopes / antigen determinants (only concepts)						
	d. Haptens and antigenicity						
	e. Immunogenicity of some natural substances –						
	Native globular proteins, polysaccharides, lipids,						
	nucleic acids.						
	f. Types of antigen- heterophile antigens, isophile						
	antigens, sequestered antigens, super antigens,						
	bacterial and viral antigens						
	Antibodies:						
	a. Immunoglobulin: Basic Structure in detail						
	b. Basic concepts - hypervariable region,						
	complementarity -determining regions (CDRs),						
	framework regions (FRs) and their importance.						
	c. Immunoglobulin classes and biological activities -						
	Immunogloublin G, Immunogloublin M,						
	Immunogloublin A, Immunogloublin E,						
	Immunogloublin D, (including diagrams)						
	d. Immunoglobulin Superfamily						
	e. Monoclonal antibodies						
	e. Monocional antibodies						
Unit IV		(15 National					
Unit IV	Activation of Immune cells	(15 Notional					
Unit IV	Activation of Immune cells : B cells:	(15 Notional Hours)					
Unit IV	Activation of Immune cells : B cells: a. Receptors structure & organization	•					
Unit IV	Activation of Immune cells : B cells:	•					
Unit IV	Activation of Immune cells : B cells: a. Receptors structure & organization b. B cell activation and differentiation — c. Thymus dependent and independent antigens	•					
Unit IV	Activation of Immune cells : B cells: a. Receptors structure & organization b. B cell activation and differentiation –	•					
Unit IV	Activation of Immune cells : B cells: a. Receptors structure & organization b. B cell activation and differentiation — c. Thymus dependent and independent antigens	•					
Unit IV	Activation of Immune cells : B cells: a. Receptors structure & organization b. B cell activation and differentiation — c. Thymus dependent and independent antigens d. B cell activating signals	•					
Unit IV	Activation of Immune cells : B cells: a. Receptors structure & organization b. B cell activation and differentiation — c. Thymus dependent and independent antigens d. B cell activating signals e. Role of Th cells in Humoral response, formation	•					
Unit IV	Activation of Immune cells : B cells: a. Receptors structure & organization b. B cell activation and differentiation – c. Thymus dependent and independent antigens d. B cell activating signals e. Role of Th cells in Humoral response, formation of T – B conjugates, CD40 / CD40L interaction, Th cell cytokine signals.	•					
Unit IV	Activation of Immune cells : B cells: a. Receptors structure & organization b. B cell activation and differentiation — c. Thymus dependent and independent antigens d. B cell activating signals e. Role of Th cells in Humoral response, formation of T — B conjugates, CD40 / CD40L interaction, Th cell cytokine signals. : T cells:	•					
Unit IV	Activation of Immune cells : B cells: a. Receptors structure & organization b. B cell activation and differentiation — c. Thymus dependent and independent antigens d. B cell activating signals e. Role of Th cells in Humoral response, formation of T — B conjugates, CD40 / CD40L interaction, Th cell cytokine signals. : T cells: a. Receptors, structure (alpha-beta, gamma-delta,	•					
Unit IV	Activation of Immune cells : B cells: a. Receptors structure & organization b. B cell activation and differentiation — c. Thymus dependent and independent antigens d. B cell activating signals e. Role of Th cells in Humoral response, formation of T — B conjugates, CD40 / CD40L interaction, Th cell cytokine signals. : T cells: a. Receptors, structure (alpha-beta, gamma-delta, TcR)	•					
Unit IV	Activation of Immune cells : B cells: a. Receptors structure & organization b. B cell activation and differentiation — c. Thymus dependent and independent antigens d. B cell activating signals e. Role of Th cells in Humoral response, formation of T — B conjugates, CD40 / CD40L interaction, Th cell cytokine signals. : T cells: a. Receptors, structure (alpha-beta, gamma-delta, TcR) b. TcR-CD3 complex structure & functions.	•					
Unit IV	Activation of Immune cells : B cells: a. Receptors structure & organization b. B cell activation and differentiation — c. Thymus dependent and independent antigens d. B cell activating signals e. Role of Th cells in Humoral response, formation of T — B conjugates, CD40 / CD40L interaction, Th cell cytokine signals. : T cells: a. Receptors, structure (alpha-beta, gamma-delta, TcR) b. TcR-CD3 complex structure & functions. c. Accessory molecules	•					
Unit IV	Activation of Immune cells : B cells: a. Receptors structure & organization b. B cell activation and differentiation — c. Thymus dependent and independent antigens d. B cell activating signals e. Role of Th cells in Humoral response, formation of T — B conjugates, CD40 / CD40L interaction, Th cell cytokine signals. : T cells: a. Receptors, structure (alpha-beta, gamma-delta, TcR) b. TcR-CD3 complex structure & functions. c. Accessory molecules d. Subsets of T cells (Th1, Th2, T reg)	•					
Unit IV	Activation of Immune cells : B cells: a. Receptors structure & organization b. B cell activation and differentiation — c. Thymus dependent and independent antigens d. B cell activating signals e. Role of Th cells in Humoral response, formation of T — B conjugates, CD40 / CD40L interaction, Th cell cytokine signals. : T cells: a. Receptors, structure (alpha-beta, gamma-delta, TcR) b. TcR-CD3 complex structure & functions. c. Accessory molecules	•					
Unit IV	Activation of Immune cells : B cells: a. Receptors structure & organization b. B cell activation and differentiation – c. Thymus dependent and independent antigens d. B cell activating signals e. Role of Th cells in Humoral response, formation of T – B conjugates, CD40 / CD40L interaction, Th cell cytokine signals. : T cells: a. Receptors, structure (alpha-beta, gamma-delta, TcR) b. TcR-CD3 complex structure & functions. c. Accessory molecules d. Subsets of T cells (Th1, Th2, T reg) e. T cell activation, Costimulatory molecules, T cell differentiation (memory & effector cell)	•					
Unit IV	Activation of Immune cells : B cells: a. Receptors structure & organization b. B cell activation and differentiation — c. Thymus dependent and independent antigens d. B cell activating signals e. Role of Th cells in Humoral response, formation of T — B conjugates, CD40 / CD40L interaction, Th cell cytokine signals. : T cells: a. Receptors, structure (alpha-beta, gamma-delta, TcR) b. TcR-CD3 complex structure & functions. c. Accessory molecules d. Subsets of T cells (Th1, Th2, T reg) e. T cell activation, Costimulatory molecules, T	•					

Class II MHC Molecules.

b. Peptide-MHC interaction.

: Cytokines

- a. Concept
- b. Properties
- c. Attributes of cytokines
- d. Biological functions of cytokines

: Complement System

- a. Functions and components of complement
- b. Complement Activation—classical, alternative and lectin pathway
- c. Biological consequences of complement activation

References for UGMB502

- 1. Jawetz, Melnick and Adelberg's Medical Microbiology, 26th Edition, Lange publication
- 2. Ananthnarayan and Panicker's, Textbook of Microbiology, 10th edition
- 3. Ananthanarayan and Panicker's, Textbook of Microbiology, 9th edition
- 4. Ananthnarayan and Panicker's, Textbook of Microbiology, 8th edition
- 5. Medical Microbiology edited by Samuel Baron. Fourth edition. (University of Texas Medical Branch of Galvesion
- 6. Sherries, John C, Ed, Medical Microbiology: an Introduction to infectious diseases.
- 7. Elsevier Publication IInd edition.
- 8. Virulence mechanisms of bacterial pathogens (Second edition) by Roth, Bolin, Brogden Minion and Michael. Cedric Mims, Medical microbiology, 3rd edition
- 9. Bailey and Scott's Diagnostic microbiology, 12th edition
- 10. Kuby Immunology, 6th Edition, W H Freeman and Company
- 11. Pathak & Palan, Immunology: Essential & Fundamental, 1st& 3rd edition, Capital Publishing Company
- 12. Fahim Khan, Elements of Immunology, Pearson Education

Practical based on UGMB502 [UGMBP05/II]

[Total Credits 1.5, Notional Hours 60]

- 1. Acid fast staining.
- 2. Identification of *Candida* species using the germ tube test and growth on Chrom agar
- 3. Study of standard cultures E. coli, Klebsiella spp., Proteus spp., Pseudomonas spp., Salmonalla typhi, S. paratyphi A, S. paratyphi B, Shigella spp., S .pyogenes, S. aurous
- 4. Identification of isolates obtained from Swab, pus, sputum, stool and urine by morphological, cultural and biochemical properties.
- 5. Rapid identification techniques [Demonstration of Vitek 2]
- 6. Antigen Preparation: O & H antigen preparation of *Salmonella*. Confirmation by slide agglutination
- 7. Separation of lymphocytes and their staining
- 8. Quality control in laboratory
- 9. Case studies on Epidemics.

UGMB503- Microbial Biochemistry – I

Course Outcome: Paper III

By the end of the course, a student should develop the ability to

CO1: Distinguish between various types of Transport Mechanisms involved in the transport of essential nutrients in the metabolism of a cell. [4]*

CO2: Illustrate and paraphrase complexes present in ETC of Mitochondria. [3]*

CO3: Measure the Energetics of glycolysis, TCA and ED pathway [5]*

CO4: Construct fermentative pathways that are present in microorganisms. [6]*

CO5: Determine a qualitative and quantitative assay for the Phosphatase enzyme [5]*

CO6: Discriminate between Homo-fermentative and Hetero-fermentative microorganisms [5]*

*Note: [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analyzing, [5]: Evaluating, [6]: Creating

SEMESTER V Paper III				
Course	Title	Credits		
Code				
UGMB503	Microbial Biochemistry - I	4 Credits (60 Lectures)		
Unit I	Composition and architecture of membrane a. Integral & peripheral proteins & interactions with lipids b. Permeability c. Aquaporins d. Mechanosensitive channels Methods of studying solute transport a. Use of whole cells b. Liposomes c. Proteoliposomes	(15 Notional Hours)		
	Solute transport across membrane a. Active transport & electrochemical gradient b. Ion gradient provides energy for secondary active transport c. Lactose transport d. ATPases and transport (only Na-K ATPase) e. Shock sensitive system – Role of binding proteins f. Phosphotransferase system g. Schematic representation of various membrane transport systems in bacteria.			

	T	
	 Membrane channels & pumps: a. The Transport of Molecules Across a Membrane May Be Active or Passive b. A Family of Membrane Proteins Uses ATP Hydrolysis to Pump Ions Across membrane c. Secondary Transporters Use One Concentration Gradient to Power the Formation of Another d. Specific Channels Can Rapidly Transport Ions Across Membranes e. Gap Junctions Allow Ions and Small Molecules to Flow between Communicating Cell f. ABC transporters use ATP to drive the Active site of a wide variety of Substrates 	
	Other examples of solute transport:	
	a. Iron transport: A special problem	
	b. Assembly of proteins into membranes and protein export	
Unit II	Bioenergetics & Quorum Sensing	(15 Notional
		Hours)
	Biochemical mechanism of generating ATP:	
	a. Substrate-Level Phosphorylation,	
	b. Oxidative Phosphorylation	
	c. Photophosphorylation	
	Floatron transport shain	
	Electron transport chain a. Universal Electron acceptors that transfer electrons	
	to E.T.C.	
	b. Carriers in E.T.C.	
	i. Hydrogen carriers – Flavoproteins, Quinones	
	ii.Electron carriers – Iron Sulphur proteins,	
	Cytochromes.	
	c. Mitochondrial ETC	
	i. Biochemical anatomy of mitochondria	
	ii.Complexes in Mitochondrial ETC	
	iii. Schematic representation of Mitochondrial ETC	
	Prokaryotic ETC	
	a. Organization of electron carriers in bacteria	
	i. Generalized electron transport pathway in bacteria	
	ii.Different terminal oxidases	
	b. Branched bacterial ETC	
	c. Pattern of electron flow in E. coli - aerobic and	
	anaerobic d. Pattern of electron flow in Azetehecter vinelandii	
	d. Pattern of electron flow in Azotobacter vinelandii	

	ATP synthesis	
	a. Explanation of terms – Proton motive force,	
	Proton pump, Coupling sites, P:O ratio, Redox	
	potential (definition of Standard reduction	
	potential)	
	b. Free energy released during electron transfer from	
	NADH to O2	
	c. Chemiosmotic theory (only explanation)	
	d. Structure & function of Mitochondrial ATP	
	synthase	
	e. Structure & function of bacterial ATP synthase	
	f. Mechanism by Rotational catalysis	
	g. Inhibitors of ETC, ATPase and uncouplers	
	g. Hillibitors of ETC, ATT asc and uncouplers	
	Other modes of generation of electrochemical	
	energy	
	a. ATP hydrolysis	
	b. Oxalate formate exchange	
	c. End product efflux, Definition, Lactate efflux	
	d. Bacteriorhodopsin: - Definition, function as proton	
	pump and significance	
	pump and significance	
	Quorum Sensing:	
Unit III	non-luminescent bacteria Methods of Studying Metabolism & Catabolism of	(15 Notional
	Carbohydrates	Hours)
	Carbonyarates	Hours)
	Experimental Analysis of metabolism	
	a. Goals of the study	
	b. Levels of organization at which metabolism is	
	_	
	studied	
	studied c. Metabolic probes.	
	studied c. Metabolic probes. d. Use of radioisotopes in biochemistry	
	studied c. Metabolic probes. d. Use of radioisotopes in biochemistry i. Pulse labeling	
	studied c. Metabolic probes. d. Use of radioisotopes in biochemistry i. Pulse labeling ii.Assay and study of radiorespirometry to	
	studied c. Metabolic probes. d. Use of radioisotopes in biochemistry i. Pulse labeling ii.Assay and study of radiorespirometry to differentiate EMP & ED	
	studied c. Metabolic probes. d. Use of radioisotopes in biochemistry i. Pulse labeling ii. Assay and study of radiorespirometry to differentiate EMP & ED e. Use of biochemical mutants	
	studied c. Metabolic probes. d. Use of radioisotopes in biochemistry i. Pulse labeling ii.Assay and study of radiorespirometry to differentiate EMP & ED	
	studied c. Metabolic probes. d. Use of radioisotopes in biochemistry i. Pulse labeling ii. Assay and study of radiorespirometry to differentiate EMP & ED e. Use of biochemical mutants f. Sequential induction	
	studied c. Metabolic probes. d. Use of radioisotopes in biochemistry i. Pulse labeling ii.Assay and study of radiorespirometry to differentiate EMP & ED e. Use of biochemical mutants f. Sequential induction Catabolism of Carbohydrates	
	studied c. Metabolic probes. d. Use of radioisotopes in biochemistry i. Pulse labeling ii. Assay and study of radiorespirometry to differentiate EMP & ED e. Use of biochemical mutants f. Sequential induction Catabolism of Carbohydrates a. Breakdown of polysaccharides – Glycogen,	
	studied c. Metabolic probes. d. Use of radioisotopes in biochemistry i. Pulse labeling ii. Assay and study of radiorespirometry to differentiate EMP & ED e. Use of biochemical mutants f. Sequential induction Catabolism of Carbohydrates a. Breakdown of polysaccharides – Glycogen, Starch, Cellulose	
	studied c. Metabolic probes. d. Use of radioisotopes in biochemistry i. Pulse labeling ii. Assay and study of radiorespirometry to differentiate EMP & ED e. Use of biochemical mutants f. Sequential induction Catabolism of Carbohydrates a. Breakdown of polysaccharides – Glycogen, Starch, Cellulose b. Breakdown of oligosaccharides - Lactose,	
	studied c. Metabolic probes. d. Use of radioisotopes in biochemistry i. Pulse labeling ii. Assay and study of radiorespirometry to differentiate EMP & ED e. Use of biochemical mutants f. Sequential induction Catabolism of Carbohydrates a. Breakdown of polysaccharides – Glycogen, Starch, Cellulose b. Breakdown of oligosaccharides - Lactose, Maltose, Sucrose, Cellobiose.	
	studied c. Metabolic probes. d. Use of radioisotopes in biochemistry i. Pulse labeling ii. Assay and study of radiorespirometry to differentiate EMP & ED e. Use of biochemical mutants f. Sequential induction Catabolism of Carbohydrates a. Breakdown of polysaccharides – Glycogen, Starch, Cellulose b. Breakdown of oligosaccharides - Lactose,	

Major pathways – (with structure and enzymes) i. ED pathway Incomplete TCA in anaerobic bacteria ii. iii. Anaplerotic reactions iv. Glyoxylate bypass Methylotrophs: Oxidation of methane, methanol, methylamines and carbon assimilation methylotrophic bacteria and yeasts. Methanogenesis from H2, f. CO2, CH3OH. HCOOH, methylamines, energy coupling and biosynthesis in methanogenic bacteria Cynogens and cynotrophs: cynogenesis and g. cynide degradation Amphibolic role of EMP; Amphibolic role of TCA cycle Energetics of Glycolysis, TCA and ED pathway – Balance sheet only. (2.5 ATP/NADH and 1.5 ATP /FADH2) (Based on this format make balance sheet for Glycolysis -Lactic acid and Alcohol fermentation and for ED pathway) **Unit IV** Fermentative (15 Notional **Pathway** & Anabolism of Hours) Carbohydrates Fermentative pathways (with structures and enzymes) Lactic acid fermentation Homofermentation Heterofermentation ii. b. Bifidum pathway c. Alcohol fermentation i. By ED pathway in bacteria d. Urea Cycle: Carbamoyl Phosphate Synthetase: Acquisition i. of the First Urea Nitrogen atom ii. Ornithine Transcarbamoylase iii. Argininosuccinate Synthetase: Acquisition of the Second Urea Nitrogen atom iv. Argininosuccinase v. Arginase

e. Glyoxylate pathway

Other modes of fermentation in microorganisms

- a. Mixed acid
- b. Butanediol
- c. Butyric acid
- d. Acetone-Butanol
- e. Propionic acid (Acrylate and succinate propionate pathway)

Anabolism of Carbohydrates

- a. General pattern of metabolism leading to synthesis of a cell
- b. from glucose
- c. Sugar nucleotides
- d. Gluconeogenesis (only bacterial)
- e. Biosynthesis of glycogen
- f. Biosynthesis of Peptidoglycan

References for UGMB503

Text books:

- 1. Stanier, R. Y., M. Doudoroff and E. A. Adelberg. General Microbiology, 5th edition, The Macmillan press Ltd
- 2. Conn, E.E., P. K. Stumpf, G. Bruening and R. Y. Doi. 1987. Outlines of Biochemistry, th edition, 1987. John Wiley &Sons. New York.
- 3. Gottschalk, G., (1985), Bacterial Metabolism, 2nd edition, Springer Verlag
- 4. White, D., (1995), The Physiology and Biochemistry of Prokaryotes, 3rd edition, Oxford University Press
- 5. Nelson, D. L. and M.M. Cox (2005), Lehninger, Principles of biochemistry. 4th edition W. H. Freeman and Company
- 6. Rose, A.H. (1976) Chemical Microbiology, 3rd edition. Butterworth-Heinemann
- 7. Zubay, G. L (1996), Biochemistry, 4th edition, Wm. C. Brown publishers
- 8. Mathews, C.K., K.E. van Holde, D.R. Appling, S, J, Anthony-Cahill (2012) Biochemistry, 4th edition. Pearson
- 9. Wilson and Walker, 4th edition Principles and Techniques of Biochemistry and Molecular Biology. Cambridge University press.

Reference Books:

- 1. Zubay, G. L (1996), Principles of Biochemistry, Wm. C. Brown publishers
- 2. Cohen, G.N. (2011). Microbial Biochemistry. 2nd edition, Springer
- 3. Principles of Biochemistry, Lehninger, International edition Seventh edition
- 4. Biochemistry by Donald Voet, Judith Voet: Forth edition
- 5. Biochemistry by Berg J., John Tymoczko, Lubert Stryer Fifth edition

Practical based on UGMB503

[UGMBP05/III] [Total Credits 1.5, Notional Hours 60]

- 1. Study of oxidative and fermentative metabolism
- 2. Qualitative and Quantitative assay of Phosphatase
- 3. Study of Homo Heterofermentations
- 4. Isolation and detection of Mitochondria
- 5. Glucose detection by GOD/POD
- 6. Enrichment and isolation and identification of Methylobacterium
- 7. Determination of the isoelectric point of the given protein or determination of pKa value of amino acid
- 8. Estimation of polyphenols/tannins by FC reagent
- 9. Effect of pH on enzyme activity
- 10. Estimation of Uric acid

UGMB504- Industrial Microbiology and Bioprocess Technology-I

Course Outcome: Paper IV

By the end of the course, a student should develop the ability to

CO1: Apply knowledge of screening methods for isolating new industrial strains.[3]*

CO2: Set up Inoculum development process for industrial scale fermentations. [6] *

CO3: Diagrammatically explain continuous and Batch sterilization process for sterilization of media. [4]*

CO4: Relate importance of detection of variables and control. [4]*

CO5: Prepare a flow chart of Wine, Vinegar, Baker's yeast and Microbial enzyme production. [4]*

CO6: Apply chemical estimation methods to determine concentration of alcohol and sugar in prepared wine. [3]*

*Note: [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analyzing, [5]: Evaluating, [6]: Creating

	SEMESTER V Paper IV				
Course	Title	Credits			
Code					
UGMB504	Industrial Microbiology and Bioprocess Technology - I	4 Credits (60 Lectures)			
Unit I	Upstream Processing	(15 Notional Hours)			
	Screening for productive strains and Strain Improvements.				
	a. Source of Microorganisms used in bioprocess				
	 b. Literature search and culture collection supply. c. Isolation <i>de novo</i> of microorganisms producing metabolites of economic importance. d. Enrichment with the substrate utilized by the 				
	microorganisms being sought. e. Enrichment with toxic analogues of the substrate utilized by the microorganisms being sought.				
	f. Testing microbial metabolites for bioactive activity. Strain Improvement.				

	 a. Selection from naturally occurring variants. b. Manipulation of the genome of industrial microorganisms. c. Genome manipulations not involving foreign DNA or bases: Conventional mutation. d. Strain improvement methods involving foreign DNA or bases. Preservation of cultures a. Preservation of industrially important organisms b. Quality control of preserved stock -Key Criteria's c. Development of a master culture bank (MCB) d. Variability test to ensure reproducibility of the MCB 1.4 The development of inocula for industrial fermentations a. Development of inocula for unicellular bacterial process b. Development of inocula for mycelial process 	
Unit II	Nutrition Of Industrial Microorganisms And Sterilization Methods The basic nutrient requirements of Industrial media. a. Criteria for the choice of raw material used in industrial media. b. Some raw material used in compounding Industrial media. c. Growth factors and Water. d. Some potential sources of components in Industrial media- Carbohydrate and Protein sources. e. The use of plant waste material in Industrial media-Starch ,Cellulose, hemi-cellulose and lignin f. Difference between Inoculum development media and production media Sterilization a. Introduction: The basis of loss by Contaminants. b. Medium sterilization (concept of nabla factor) c. Methods of batch sterilization	(15 Notional Hours)

	f. Sterilization of the Feeds g. Sterilization of the liquid wastes Filter Sterilization a. Filter sterilization of fermentation media b. Filter sterilization of air c. Filter sterilization of fermenter exhaust air. Achievement of aseptic conditions Aseptic operation & containment	
Unit III	Fermention Equipments And Control 3.1 Design of fermenter Basic functions of fermenter,- Aeration and agitation: Agitators, Stirrer glands & bearing, Baffles Mechanical seals(Names & Functions ,no diagrams), Magnetic Drive	(15 Notional Hours)
	Sparger: porous, orifice; nozzle; combined e. Achievement & maintenance of ascetic condition, Valves / Steam traps – Function in general & examples. Types of fermenters: Acetator, Cavitator, Tower fermenter, Cylindro	
	conical, Air lift fermenter – outer loop / inner loop, Deep jet, Cyclone column, Packed tower (generator), Rotating disc, Bubble cap. Instrumentation & Control of Variables Introduction, Types of sensors, Sensing & Control of- pH, temp, Dissolved oxygen, Flow measurement &control, Pressure, Inlet / Exit gas analysis, Foam sensing, Oxygen	
Unit IV	Scale up and scale down of fermentation TRADITIONAL FERMENTATIONS	(15 Notional Hours)
	Alcoholic fermentation, composition of grape juice, Sulphur dioxide addition, factors affecting wine fermentation, examples and role of yeasts involved in fermentation, malolactic fermentation, technological aspects of wine making- red, white,	

champagne, sherry, examples of aroma compounds of wine, types and examples of wine Vinegar (acetic acid): Introduction, biosynthesis, production using generator, production using submerged fermenter, recovery. Baker's yeast: Outline of production, yeast strains and their properties, factors important in production-oxygen requirement and aeration, concentration of sugar, pH, temperature, preparation of substrate, fermentation, harvesting of yeast cells, production of compressed and active dry yeast. Microbial transformation of steroids and Sterols a. Uses of steroids and sterols as sex hormones, corticosteroids, saponins, heterocyclic steroids Types of microbial steroids transformations. **Production of Microbial Enzymes** a. Introduction, development of new enzymes, Fermentation process, recovery and finishing, specifications, regulations and applications. b. Example: production of Amylase by Bacteria (Submerged) and by Fungi (SSF) **Production of Carotenoids.** Introduction and production of Beta carotene

Note: 1) Green Color: Topics related to Local/National/Regional & global development needs

2) Blue Color: Topics related to Employability/Entrepreneurship/Skill Development

3) Yellow Color: Topics related to professional ethics, gender, human values, Environment & Sustainability

Text Books and References for: UGMB504

Text books:

- 1. Casida L. E., "Industrial Microbiology" (2009) Reprint, New Age International (P) Ltd, Publishers, New Delhi.
- 2. Stanbury P. F., Whitaker A. & Hall S. J., (1997), "Principles of Fermentation Technology", 2nd edition, Aditya Books Pvt. Ltd, New Delhi.
- 3. Stanbury P. F., Whitaker A. & Hall S. J 3rd edition (2017) "Principles of Fermentation Technology"

- 4. Peppler, H. J. and Perlman, D. (1979), "Microbial Technology". Vol. 1 & 2, Academic Press
- 5. H. A. Modi, (2009). "Fermentation Technology" Vol. 1 & 2, Pointer Publications, India.
- 6. Okafor Nduka (2007) "Modern Industrial Microbiology and Biotechnology", Science Publications Enfield, NH, USA.
- 7. Crueger W. and Crueger A. (2000) "Biotechnology -"A Textbook of Industrial
- 8. Microbiology", 2nd edition, Panima Publishing Corporation, New Delhi.
- 9. Prescott and Dunn's ''Industrial Microbiology''(1982) 4th edition, McMillan Publishers

Reference books

- 1. R. C. Dubey, 2005 A Textbook of "Biotechnology" S. Chand and Company, New Delhi.
- 2. H. A. Modi, 2009. "Fermentation Technology" Vol: 1 & 2, Pointer Publications, India
- 3. Practical Fermentation Technology by Brian Mcneil & Linda M. Harvey (2008).

Practical based on UGMB504

[UGMBP05/IV] [Total Credits 1.5, Notional Hours 60]

- 1. Determination of antibiotic spectrum using agar strip and streak method.
- 2. Production of amylase- detection, shake flask or solid substrate cultivation and detection (Qualitative).
- 3. Wine production from apple.
 - Alcohol and Sugar Tolerance of yeast for wine production Preparation of yeast innoculum Sugar Estimation and Alcohol estimation
- 4. Vinegar production from red wine.
- 5. "Sirka" production and study of its microflora
- 6. Isolation of Carotenoid producers from natural sources
- 7. Industrial Visit

T.Y.B.Sc. Microbiology: Curriculum Revised for Credit Based Semester & Grading System To be implemented from the academic year 2020-2021 SEMESTER VI

Theory:

Course Code	UNIT	TOPIC HEADINGS	Credits	NH/ week
UGMB601	Unit I	Gene Transfer Mechanisms & Recombination		
Microbial	Unit II	Recombinant DNA technology	3	4
Genetics -II	Unit III	Introduction to Virology		
	Unit IV	Advanced Virology		

Course Code	UNIT	TOPIC HEADINGS	Credits	NH/ week
UGMB602 Medical Microbiology and Immunology -II	Unit I	Medical Mircobiology II		
	Unit II	Chemotherapy of Infectious agents		
	Unit III	Immune responses and their detection	3	4
	Unit IV	Vaccines, Immuno-hematology and Hypersensitivity		

Course Code	UNIT	TOPIC HEADINGS	Credits	NH/
	UNII			week
	IInit I	Lipid Metabolism & Catabolism of		
UGMB603	Unit I	Hydrocarbons		
Microbial	Unit II	Metabolism of Proteins and Nucleic Acids	3	4
Biochemistry	Unit III	Metabolic Regulation		
-II				
	Unit IV	Prokaryotic Photosynthesis & Inorganic		

		Metabolism		
Course Code		TOPIC HEADINGS	Credits	NH/
Course Coue	UNIT			week
	Unit I	Downstream Processing		
UGMB604	Unit II	Advances in Bioprocess Technology	_	
Bioprocess		Quality Assurance, Quality Control,	3	4
Technology:	Unit III	Instrumentation		
- II		and Bioassay		
	Unit IV	Industrial Fermentations		

PRACTICAL:

COURSE CODE	PAPER	TOPIC HEADINGS	Credits	NH/ week
UGMBP601	I	Microbial Genetics -II		
	II	Medical Microbiology and Immunology -II	6	16
	III	Microbial Biochemistry-II		
	IV	Bioprocess Technology: – II		

UGMB601- Genetics & Virology

Course Outcome: Paper I

By the end of the course, a student should develop the ability to

CO1: Diagrammatically represent Transformation, Transduction and Conjugation, as well as Homologous Recombination.[4]*

CO2: Paraphrase methods of cloning and screening the clones.[2]*

CO3: Solve analytical problems on restriction mapping .[5]*

CO4: Summarize viral genomes, enzymes and envelops.[2]*

CO5: Compare and contrast between different methods of virus visualization and enumeration.[4]*

CO6: Study enrichment and isolation of Coliphages.[3]*

*Note: [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analyzing, [5]: Evaluating, [6]: Creating

SEMESTER VI Paper I			
Course	Title	Credits	
Code			
UGMB601	Genetics & Virology	4 Credits (60 Lectures)	
Unit I	Gene Transfer Mechanisms & Recombination 1.1 Gene transfer mechanisms in bacteria	(15 Notional Hours)	
	a. Transformation		
	bacteria Natural transformation in <i>Bacillus subtilis</i> ,		
	Haemophilus influenzae Artificial Transformation		
	Transformation as a genetic tool: gene mapping v. Transformation as a molecular tool		
	vi. Problems based on transformation.b. Conjugation		
	i. Discovery of conjugation in bacteriaii. Properties of F plasmid/Sex factor		
	iii. The conjugation machinery iv. Transfer of DNA		
	v. Surface exclusion vi. Formation of Hfr and transfer of DNA		
	vii. Genetic uses of Hfr strains- mapping of genes viii. Formation of F- prime and transfer of DNA		

	ix. Genetic uses of F-primes - mapping of genes	
	x. Conjugation from prokaryotes to eukaryotes xi. Problems based on conjugation	
	c. Transduction	
	i. Discovery of transduction in bacteria	
	ii. Generalized transduction- P1 as a model	
	iii. Two-factor crosses to determine gene linkage	
	iv. Three- factor crosses to map the order of genes	
	v. Strain construction	
	vi. Localized mutagenesis	
	vii. Specialized transduction- lambda phage as a	
	model	
	viii. Making merodiploids with specialized	
	transducing phage	
	ix. Problems based on transduction	
	d. Recombination in bacteria	
	i. Models of Homologous recombination	
	ii. Holliday model of recombination	
	iii. Enzymes & proteins involved in recombination	
	iv. Site –specific recombination- e.g. lambda phage	
	v. Illegitimate recombination	
Unit II	Recombinant DNA technology	(15 Notional
		Hours)
	2.1 DNA Cloning- Basic steps	
	2.2 Restriction enzymes	
	2.3 Cloning vectors	
	a. Plasmids	
	b. Bacteriophages	
	c. Artificial chromosomes	
	d. Shuttle Vectors	
	e. Expression vectors	
	f. Cosmids	
	g. Phagmids	
	h. PCR cloning vectors	
	i. Transcribable vectors	
	2.4 Methods of transformation of host cell	
	2.4 Methods of transformation of host cell	
	2.4 Methods of transformation of host cell 2.5 DNA Libraries	
	2.4 Methods of transformation of host cell2.5 DNA Librariesa. Genomic Libraries	
	2.4 Methods of transformation of host cell 2.5 DNA Libraries a. Genomic Libraries b. Chromosomal Libraries c. cDNA libraries	
	 2.4 Methods of transformation of host cell 2.5 DNA Libraries a. Genomic Libraries b. Chromosomal Libraries 	

	b. Screening a genomic library	
	c. Identifying genes by complementation of mutations	
	d. Identifying genes using heterologous probes	
	e. Identifying genes using oligonucleotide probes	
	Molecular Techniques for analysis of DNA	
	a. Restriction mapping	
	b. Southern Blot Analysis of sequences of genome	
	c. Northern Blot Analysis of RNA	
	d. Fluorescent <i>in situ</i> hybridization	
	di Tuorescent in siin injerialenion	
	Polymerase Chain Reaction	
	a. Basic steps	
	b. Advantages and limitations of PCR	
	c. Applications of PCR	
	d. Reverse Transcription- PCR	
	e. Real-time PCR	
Unit III	Introduction to Virology	(15 Notional Hours)
	Historical Perspective	Hours)
	a. Important milestones in developing virology	
	b. Discovery of emerging viruses in 21 st century	
	Viral Architecture	
	a. Properties viruses	
	b. Viral structure and morphology- Capsid, genome,	
	envelope, Viral enzymes	
	c. Structural details of T4, TMV, HIV & Influenza	
	virus	
	d. Viruses that challenge the definition- Giruses,	
	Virophages	
	Viral Taxonomy & Nomenclature	
	a. Classification on the basis of diseases	
	b. Classification on the basis of host organisms	
	c. Classification on the basis of virus morphology	
	d. Classification on the basis of nucleic acids	
	e. Baltimore classification	
	f. Virosphere	
1		
	g. Viral Nomenclature	
	g. Viral Nomenclature Cultivation of Viruses	
	Cultivation of Viruses	

	eggs, Tissue culture, Animals c. Cultivation of Plant viruses				
Unit IV	4.1 Visualization and enumeration of virus particles				
	 a. Measurement of infectious units i. Plaque assay ii. Fluorescent focus assay iii. Infectious center assay iv. Transformation assay v. Endpoint dilution assay. b. Measurement of virus particles and their components i. Electron microscopy ii. Hemagglutination assay iii. Measurement of viral enzyme activity. c. Serological methods i. Virus neutralization assay ii. Immunostaining iii. Immunoblotting iv. Immunoprecipitation v. ELISA vi. PCR vii. Microarray technology 4.2 Life cycle of T4 phage, TMV, Influenza Virus 				
	and HIV 4.3 Regulation of lytic and lysogenic pathway of lambda phage				
	4.3 Role of viruses in cancer: Important definitions, characteristics of cancerous cells, Human DNA tumor viruses- EBV, Kaposis sarcoma virus, Hepatitis B and C virus, Papiloma Virus, RNA tumor viruses				
	4.5. Prions and viroids:				

References for UGMB601

- 1. Peter J. Russell (2010), "Genetics-A molecular approach", 3rd ed.
- 2. Benjamin A. Pierce (2008), "Genetics a conceptual approach", 3rd ed., W. H. Freeman and company.
- 3. M. Madigan, J. Martinko, J. Parkar, (2012), "Brock Biology of microorganisms", 13th ed., Pearson Education International.
- 4. Prescott, Harley and Klein, "Microbiology",. 7th edition Mc Graw Hill international edition.
- 5. Edward Wagner and Martinez Hewlett, (2008) "Basic Virology", 3rd edition, Blackwell Publishing
- 6. Teri Shors, (2009), "Understanding viruses", Jones and Bartlett publishers.
- 7. Robert Weaver, (2008), "Molecular biology", , 3rd edn. Mc Graw Hill international edition.
- 8. Primrose and Twyman, (2001), "Principles of gene manipulation and genomics", 6th ed, Blackwell Publishing
- 9. Snustad, Simmons, "Principles of genetics", 3rd edn. John Wiley & sons, Inc.
- 10. Flint, Enquist, Racanillo and Skalka, "Principles of virology", 2nd edn. ASM press.
- 11. Benjamin Lewin, (9th edition), "Genes IX", , Jones and Bartlett publishers.
- 12. J.D. Watson, "Molecular biology of the gene", 5th edition.

Practical Syllabus Based on UGMB601

Course Code: UGMBP06/I

- 1. Isolation of genomic DNA of E. coli
- 2. Gel Electrophoresis of DNA
- 3. Elution of DNA from Gel
- 4. Isolation of plasmid DNA by alkaline lysis method.
- 5. Preparation of competent cells and transformation
- 6. Enrichment of coliphages, phage assay (pilot & proper).
- 7. Restriction digestion mapping [Problem solving]
- 8. Polymerase Chain Reaction
- 9. Animal cell culture (Demonstration)

UGMB602-Medical Microbiology and Immunology -II

Course Outcome: Paper II

By the end of the course, a student should develop the ability to

CO1: Predict risk of Nosocomial infection in health care workers and enlisting Nosocomial infection [5]*

CO2: Suggest appropriate Chemotherapeutic drug & find out alternate drug of choice [4]*

CO3: Summarise the ABO blood group systems for Transfusions and Transplantation [2]*

CO4: Analyse Antigen Antibody interactions for variety of Immunological assays [4]*

CO5: Test the effect of antibiotics against the pathogens by Kirby Bauer method [4]*

CO6: Distinguish the blood groups based on ABO system [4]*

*Note: [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analyzing, [5]: Evaluating, [6]: Creating

	SEMESTER VI Paper II				
Course	Title	Credits			
Code					
UGMB602	Medical Microbiology and Immunology -II	4 Credits (60 Lectures)			
Unit I	Medical Microbiology II	(15 Notional Hours)			
	Study of vector-borne infections — Malaria				
	Sexually transmitted infectious diseases: a. AIDS b. Gonorrhea c. Human Papilloma virus d. Genital Herpes				
	Central Nervous system infectious diseases: a. Cerebro Spinal Fluid changes during CNS infections (only tabular information) b. Polio(detail) c. Meningococcal meningitis(short) - Tabular information on bacterial and viral meningitis				

i	1				
	(pathogen, clinical features, mortality,				
	sequelae) d. Study pathogenesis of viral encephalitis (only				
	diagram)				
	ung.um/				
	1.4 Health care associated infections (overview)				
	a. Risk factors. Common infecting organisms and measures to prevent nosocomial infections)				
	b. Health associates UTI, bacteremia, pneumonia,				
	wound, hepatitis B, C, tetanus, gastroenteritis				
	c. Sources and reservoirs of health-care associated				
	infections-self,cross,environmental sources				
	d. Measures to control, standard precautions-hand				
	hygiene, personal protective equipment, injection safety, environmental cleaning, medical equipment,				
	respiratory hygiene/cough etiquette, precautions in				
	Operation Theatre				
	e. Post-exposure control				
	1.5 List of new infectious diseases recognized since				
	1977				
Unit II	Chemothereny of Infectious agents	(15 Notional			
Omi II	Chemotherapy of Infectious agents	(15 Notional Hours)			
	2.1 Chemotherapy of Infectious Agents	110013)			
	ttributes of an ideal chemotherapeutic agent				
	i. Selective toxicity				
	ii. Bioavailability of drug				
	iii. Routes of drug administration				
i	iv. LD50				
	iv. LD50 v. MBC				
	v. MBC				
	v. MBC Mode of action of antibiotics:				
	v. MBC Mode of action of antibiotics: a. Bacteria: i. Cell wall: Beta lactams [1st to 6th Generatione.g. Meropenem, Imipenem, Piperacillin],				
	v. MBC Mode of action of antibiotics: a. Bacteria: i. Cell wall: Beta lactams [1st to 6th Generatione.g. Meropenem, Imipenem, Piperacillin], Cycloserine Cephalosporins, Bacitracin				
	v. MBC Mode of action of antibiotics: a. Bacteria: i. Cell wall: Beta lactams [1st to 6th Generatione.g. Meropenem, Imipenem, Piperacillin], Cycloserine Cephalosporins, Bacitracin ii. Cell membrane (Polymyxin, Monensin)				
	v. MBC Mode of action of antibiotics: a. Bacteria: i. Cell wall: Beta lactams [1st to 6th Generatione.g. Meropenem, Imipenem, Piperacillin], Cycloserine Cephalosporins, Bacitracin ii. Cell membrane (Polymyxin, Monensin) iii. Protein synthesis (Streptomycin,				
	v. MBC Mode of action of antibiotics: a. Bacteria: i. Cell wall: Beta lactams [1st to 6th Generatione.g. Meropenem, Imipenem, Piperacillin], Cycloserine Cephalosporins, Bacitracin ii. Cell membrane (Polymyxin, Monensin) iii. Protein synthesis (Streptomycin, Tetracycline, Chloramphenicol)				
	v. MBC Mode of action of antibiotics: a. Bacteria: i. Cell wall: Beta lactams [1st to 6th Generatione.g. Meropenem, Imipenem, Piperacillin], Cycloserine Cephalosporins, Bacitracin ii. Cell membrane (Polymyxin, Monensin) iii. Protein synthesis (Streptomycin,				
	v. MBC Mode of action of antibiotics: a. Bacteria: i. Cell wall: Beta lactams [1st to 6th Generatione.g. Meropenem, Imipenem, Piperacillin], Cycloserine Cephalosporins, Bacitracin ii. Cell membrane (Polymyxin, Monensin) iii. Protein synthesis (Streptomycin, Tetracycline, Chloramphenicol) iv. Nucleic acids (Nalidixic acid, Rifamycin,				
	v. MBC Mode of action of antibiotics: a. Bacteria: i. Cell wall: Beta lactams [1st to 6th Generatione.g. Meropenem, Imipenem, Piperacillin], Cycloserine Cephalosporins, Bacitracin ii. Cell membrane (Polymyxin, Monensin) iii. Protein synthesis (Streptomycin, Tetracycline, Chloramphenicol) iv. Nucleic acids (Nalidixic acid, Rifamycin, Quinolones) v. Enzyme inhibitors (Trimethoprim, Sulfa drugs) b. Fungi:				
	v. MBC Mode of action of antibiotics: a. Bacteria: i. Cell wall: Beta lactams [1st to 6th Generatione.g. Meropenem, Imipenem, Piperacillin], Cycloserine Cephalosporins, Bacitracin ii. Cell membrane (Polymyxin, Monensin) iii. Protein synthesis (Streptomycin, Tetracycline, Chloramphenicol) iv. Nucleic acids (Nalidixic acid, Rifamycin, Quinolones) v. Enzyme inhibitors (Trimethoprim, Sulfa drugs) b. Fungi: Griseofulvin, Nystatin, Amphotericin B,				
	v. MBC Mode of action of antibiotics: a. Bacteria: i. Cell wall: Beta lactams [1st to 6th Generatione.g. Meropenem, Imipenem, Piperacillin], Cycloserine Cephalosporins, Bacitracin ii. Cell membrane (Polymyxin, Monensin) iii. Protein synthesis (Streptomycin, Tetracycline, Chloramphenicol) iv. Nucleic acids (Nalidixic acid, Rifamycin, Quinolones) v. Enzyme inhibitors (Trimethoprim, Sulfa drugs) b. Fungi:				
	v. MBC Mode of action of antibiotics: a. Bacteria: i. Cell wall: Beta lactams [1st to 6th Generatione.g. Meropenem, Imipenem, Piperacillin], Cycloserine Cephalosporins, Bacitracin ii. Cell membrane (Polymyxin, Monensin) iii. Protein synthesis (Streptomycin, Tetracycline, Chloramphenicol) iv. Nucleic acids (Nalidixic acid, Rifamycin, Quinolones) v. Enzyme inhibitors (Trimethoprim, Sulfa drugs) b. Fungi: Griseofulvin, Nystatin, Amphotericin B,				

Unit IV	b. Agglutination reactions - haeme-agglutination, bacterial agglutination, passive agglutination, agglutination inhibition c. Radioimmunoassay (RIA) d. Enzyme Linked Immunosorbent Assay - indirect, competitive and sandwich ELIS e. Immunofluorescence- Direct and indirect. f. Western blotting. g. Complement fixation test Vaccines, Immuno-hematology and Hypersensitivity	(15 Notional Hours)
	Cell mediated effector response a. Generation and target destruction by Cytotoxic T cells. b. Killing mechanism of NK cells. c. Antibody dependent cell cytotoxicity (ADCC) : Antigen Antibody interactions a. Precipitation reaction – Immunoelectrophoresis	
	 : Humoral Response a. Introduction of Humoral response, Primary and secondary responses b. Germinal centres and antigen induced B cell Differentiation c. Affinity maturation and somatic hyper mutation, Ig diversity, class switching d. Generation of plasma cells and memory cells. 	
Unit III	d. Protozoa:Metronidazole, Mepacrine) Resistance to antibiotics: a. Development of antibiotic resistance (e.g. ESBL, VRE, MRSA) b. Reasons and Mechanisms of drug resistance c. Use and misuse antibiotics Selection and testing of antibiotics for bacterial isolates by Kirby-Bauer method a. Methods that detect <i>S. aureus</i> resistance to methicillin, and determination of ESBL strains b. Suceptiblity tests- MBC,Serum bacterial assay Use of antibiotics in combination Immune Responses And Their Detection	(15 Notional Hours)

: Vaccines

- a. Active and passive immunization
- b. Types of vaccines Killed and attenuated vaccines, Whole organism vaccines, Purified macromolecules as vaccines, recombinant viral vector vaccines, DNA vaccines
- c. Use of adjuvants in vaccine
- d. New vaccine strategies.
- e. Ideal vaccine

: Immuno-haematology

- a. Human blood group systems
- b. ABO system
- c. Secretors and non secretors
- d. Bombay Blood group.
- e. Rhesus system and list of other blood group system.
- f. Haemolytic disease of new born
- g. Coombs test.

: Hypersensitivity

- a. Coombs and Gell's classification (Table)
- b. IgE mediated (Type I) hypersensitivity
- c. Antibody mediated cytotoxic (Type II) hypersensitivity
- d. Immune complex mediated (Type IV) hypersensitivity
- e. Delayed type (Type IV) hypersensitivity

References for UGMB602

- 1. Jawetz, Melnick and Adelberg's Medical Microbiology, 26th edition, Lange publication
- 2. Ananthnarayan and Panicker's, Textbook of Microbiology, 10th editio2017
- 3. Cedric Mims, Medical microbiology, 3rd edition
- 4. Ananthnarayan and Panicker's, Textbook of Microbiology, 9th editionAnanthanarayan and Panicker's, Textbook of Microbiology, 8th edition
- 5. Introduction to diagnostic microbiology for lab Science Maria Dannessa Delost 2015

- 6. Prescott's microbiology 10th edition 2017
- 7. Kuby Immunology,4th and 6th edition, W H Freeman and Company
- 8. Pathak & Palan, Immunology: Essential & Fundamental, 1st& 3rd edition, Capital

Practical Syllabus Based on UGMB602

Course Code: UGMBP06/II

- 1. Detection of malarial parasite in blood films.
- 2. Selection and testing of antibiotics using the Kirby-Bauer method
- 3. Determination of MBC of an antibiotic.
- 4. Antibiotic assay in body fluids
- 5. Blood grouping Direct & Reverse typing, Major-minor cross match,
- 6. Coomb's direct test, Calculation of hematological indices
- 7. Serum protein separation by electrophoresis
- 8. Determination of Isoagglutinin titer
- 9. Demonstration experiments Widal
- 10. ELISA (Qualitative)
- 11. Single Radialimmunodiffusuion.
- 12. Visit to blood bank and preparation of visit report

UGMB603-Microbial Biochemistry – II

Course Outcome: Paper III

By the end of the course, a student should develop the ability to

CO1: Distinguish the Lipids and mention its functions [4]*

CO2: Illustrate Catabolism and Anabolism of Nucleotides and Amino acids [3]*

CO3: Identify the terms involved in the regulation of metabolic pathways[2]*

CO4: Discriminate between Regulation of transcription by positive & negative control and evaluate the role of DNA Binding Proteins[5]*

CO5: Discriminate mechanisms of Light and Dark reactions which are part of Photosynthesis [5]*

CO6: Measure proteins by Folin Lowry's method [5]*

*Note: [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analyzing, [5]: Evaluating, [6]: Creating

	SEMESTER VI Paper III		
Course	Title	Credits	
Code			
UGMB603	Microbial Biochemistry - II	4 Credits (60 Lectures)	
Unit I	Lipid Metabolism & Catabolism of Hydrocarbons	(15 Notional Hours)	
	Introduction to Lipids		
	a) Lipids –Definition, classification & functions		
	b) Types and role of fatty acids found in bacteria		
	c) Common phosphoglycerides in bacteria		
	d) Action of lipases on triglycerides /tripalmitate		
	Catabolism of Fatty Acids and PHB		
	 a) Oxidation of saturated fatty acid by β oxidation pathway 		
	b) Energetics of β oxidation of Palmitic acid		
	c) Oxidation of propionyl CoA by acrylyl- CoA pathway and methylcitrate pathway		
	d) PHB as a food reserve and its degradation		
	Anabolism of Fatty Acids & Lipids		

	a) Biosynthesis of straight chain even carbon saturated fatty acid (palmitic acid)	
	b) Biosynthesis of phosphoglycerides in bacteria	
	c) Biosynthesis of PHB	
	Catabolism of aliphatic hydrocarbons	
	a) Organisms degrading aliphatic hydrocarbons	
	b) Hydrocarbon uptake mechanisms	
	c) Omega oxidation pathway-	
	i. Pathway in Corynebacterium and yeast	
	ii. Pathway in Pseudomonas	
Unit II	Metabolism of Proteins and Nucleic Acids	(15 Notional Hours)
	Protein metabolism: Protein folding, Dynamics	=======================================
	a) Protein Folding: Theory and Experiment	
	b) Folding Accessory Proteins	
	c) Enzymatic degradation of proteins	
	d) General reactions of amino acids catalyzed by	
	i. Amino acid decarboxylases	
	ii. Amino acid deaminases	
	iii. Amino acid transaminases	
	iv. Amino acid racemases	
	e) Metabolic fate of amino acids - Glucogenic and ketogenic amino acids	
	f) Fermentation of pair of amino acids -Stickland reaction(include enzymes)	
	Anabolism of amino acids	
	a) Schematic representation of amino acid families	
	b) Biosynthesis of amino acids of Serine family (Serine, Glycine and Cysteine)	
	Catabolism of Amino Acids	
	Degradation of Amino acids to:	
L	1	

Г			
a) Pyruvic acid		
l t) Acetyl Co-A		
c) α- Ketoglutarate		
C) Succinyl Co-A		
Cata	abolism of Nucleotides		
a)	Degradation of purine nucleotides up to uric acid formation		
b)	Salvage pathway for purine and pyrimidine nucleotides		
Bios	ynthesis of nucleotides		
a)	Biosynthesis of pyrimidine nucleotides		
b)	Biosynthesis of purine nucleotides		
(c)	Biosynthesis of deoxyribonucleotides		
Unit III Me	tabolic Regulation	(15 Notional	
Defi	nition of terms and major modes of regulation	Hours)	
Reg	Regulation of enzyme activity		
a	Noncovalent enzyme inhibition		
	i. Allosteric enzymes and feedback inhibition		
	ii. Patterns of FBI, combined activation and inhibition		
b)	3.2.2 Covalent modification of enzymes		
	i. Monocyclic cascades		
	ii. Examples of covalent modification(without structures)		
	iii. Regulation of Glutamine synthetase		
c)	Regulation of Multienzyme complexes and		
	multifunctional enzymes, specific eg: Blood		
	coagulation cascade		
	A binding proteins and regulation of scription by positive & negative control		
a	DNA binding proteins		
b	Negative control of transcription: Repression and		

	Induction	
	c) Positive control of transcription: Maltose catabolism in <i>E. coli</i>	
	d) Ara operon	
	e) Trp operon	
	Global regulatory mechanisms	
	a) Global control & catabolite repression	
	b) Stringent response	
	Regulation of EMP and TCA cycle - (Schematic and Regulation of Pyruvate dehydrogenase Complex)	
Unit IV	Prokaryotic Photosynthesis & Inorganic Metabolism Photosynthesis	(15 Notional Hours)
	 a) Definition of terms in photosynthesis (light and dark reactions, Hill reaction & reagent, Photophosphorylation) 	
	b) Photosynthetic pigments	
	c) Location of photochemical apparatus	
	d) Photochemical generation of reductant	
	Light reactions in:	
	a) Purple photosynthetic bacteria	
	b) Green Sulphur bacteria	
	c) Cyanobacteria (with details)	
	Dark reaction	
	a) Calvin Benson cycle	
	b) Reductive TCA cycle	
	Inorganic Metabolism	
	a) Assimilatory pathways:	
	i. Assimilation of nitrate,	
	ii. Ammonia fixation – Glutamate dehydrogenase,	

- Glutamine synthetase, GS-GOGAT, Carbamoyl phosphate synthetase
- iii. Biological nitrogen fixation (Mechanism for N2 fixation and protection of nitrogenase)
- iv. Assimilation of sulphate
- b) Dissimilatory pathways:
 - i. Nitrate as an electron acceptor (Denitrification in *Paracoccus denitrificans*)
 - ii. Sulphate as an electron acceptor
- **4.5 Lithotrophy**–Enlist organisms and products formed during oxidation of Hydrogen, carbon monoxide, Ammonia, Nitrite, Sulphur, Iron

Reference for UGMB603

Text books

- 1. Principles of Biochemistry, Lehninger, International edition Seventh edition
- 2. Donald Voet, Judith Voet: Forth edition
- 3. Berg J., John Tymoczko, Lubert Stryer Fifth edition.]
- 4. Stanier, R. Y., M. Doudoroff and E. A. Adelberg. General Microbiology, 5th edition, The Macmillan press Ltd.
- 5. Conn, E.E., P. K. Stumpf, G. Bruening and R. Y. Doi. 1987. Outlines of Biochemistry,5th edition, 1987. John Wiley & Sons. New York.
- 6. Gottschalk, G., (1985), Bacterial Metabolism, 2nd edition, Springer Verlag
- 7. White, D., (1995), The Physiology and Biochemistry of Prokaryotes, 3rd edition, Oxford University Press
- 8. Nelson, D. L. and M.M. Cox (2005), Lehninger, Principles of biochemistry, 4th edition, W. H. Freeman and Company.
- 9. G. Moat, J.W. Foster, M,P. Spector.(2002), Microbial Physiology, 4th edition, WILEYLISS
- 10. Madigan, M.T. and J.M. Martinko 2006. [11th edition] Brock Biology of Microorganisms. Pearson Prentice Hall.

Reference books:

- 1. Zubay, G. L (1996), Biochemistry, 4th edition, Wm. C. Brown publishers
- 2. Zubay, G. L (1996), Principles of Biochemistry, Wm. C. Brown publishers
- 3. Principles of Biochemistry, Lehninger, 5th edition, W. H. Freeman and Company

Practical Syllabus Based on UGMB603

Course Code: UGMBP06/III

- 1. Detection of PHB producing bacteria
- 2. To study catabolite repression by diauxic growth curve.
- 3. Protein estimation by Folin Lowry's method
- 4. Qualitative and Quantitative assay of Protease
- 5. Qualitative detection of Lipase
- 6. Study of breakdown of amino acids Lysine decarboxylase and Deaminase activity
- 7. Study of Lithotrophs Nitrosification and Nitrification

UGMB604- Industrial Microbiology and Bioprocess Technology-II

Course Outcome: Paper IV

By the end of the course, a student should develop the ability to

CO1: Diagrammatically/ schematically represent Effluent Treatment steps. [4]*

CO2: Choose correct method of recovery for a particular product. [5]*

CO3: Differentiate between ATC and PTC media [4]*

CO4: Exemplify various biological and physical indicators used for Sterility

Assurance. [2]*

CO5: Prepare a flow chart for manufacturing process of Streptomycin, Vitamin B12,

Glutamic acid, Mushroom and Vaccines. [4]*

CO6: Perform agar diffusion type of Bioassay to determine concentration of

Streptomycin and Vitamin B₁₂. [3]*

*Note: [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analyzing, [5]: Evaluating, [6]: Creating

	SEMESTER VI Paper IV	
Course	Title	Credits
Code		
UGMB604	Industrial Microbiology and Bioprocess Technology -	4 Credits (60 Lectures)
Unit I	Down Stream Processing- I	(15 Notional Hours)
	Recovery and purification of Fermentation products a. Introduction	
	b. Removal of solid materials.c. Foam separation	
	Precipitation	
	Filtration- Theory of filtration, Batch filters, Continuous filters	
	flocculation and Ranges of centrifugations.	
	Cell Disruption	

i. Solvent Recovery j. Chromatographic techniques k. Membrane Processes Drying Crystallization Whole Broth Processing 1.2 Effluent treatment — Introduction, Dissolved oxygen concentration as indicator of water quality. The strength of fermentation effluents, Treatment process (Physical, chemical and biological) Unit II Advances in Bioprocess Technology-II Animal biotechnology Primary cell culture and established cell lines Basic principles, Growth media, Cell viability Scale up of cultured cells and tissue Applications of cell culture: Vaccines, somatic cell fusion, valuable products. Plant Biotechnology: Introduction Requirements for in vitro culture, Methods of plant cell and tissue culture Types of cultures of plant materials: explants, callus, organogenesis, root culture, protoplast culture, protoplast fusion and somatic hybridization. Applications: production of disease resistant plants, production of virus free plant, In vitro selection of cell lines for disease resistance, micropropogation, secondary metabolites from cell culture, transgenic plants for crop improvement Immobilized enzyme and cells Introduction and Definitions Methods, Immobilized Enzyme Reactors, Applications Unit III Quality Assurance, Quality Control, Instrumentation and Bioassay Modes of fermentation Quality assurance, quality control and GMP a. Definitions, Chemical and pharmaceutical			
k. Membrane Processes Drying Crystallization Whole Broth Processing 1.2 Effluent treatment — Introduction, Dissolved oxygen concentration as indicator of water quality, The strength of fermentation effluents, Treatment process (Physical, chemical and biological) Unit II Advances in Bioprocess Technology-II Animal biotechnology Primary cell culture and established cell lines Basic principles, Growth media, Cell viability Scale up of cultured cells and tissue Applications of cell culture: Vaccines, somatic cell fusion, valuable products. Plant Biotechnology :Introduction Requirements for in vitro culture, Methods of plant cell and tissue culture I'ypes of cultures of plant materials: explants, callus, organogenesis, root culture, shoot culture, micropropogation, suspension culture, protoplast culture, protoplast fusion and somatic hybridization. Applications: production of disease resistant plants, production of virus free plant, In vitro selection of cell lines for disease resistance, micropropogation, secondary metabolites from cell culture, transgenic plants for crop improvement Immobilized enzyme and cells Introduction and Definitions Methods, Immobilized Enzyme Reactors, Applications Unit III Quality Assurance, Quality Control, Instrumentation and Bioassay Modes of fermentation Quality assurance, quality control and GMP		i. Solvent Recovery	
Crystallization		j. Chromatographic techniques	
Crystallization Whole Broth Processing 1.2 Effluent treatment — Introduction, Dissolved oxygen concentration as indicator of water quality, The strength of fermentation effluents, Treatment process (Physical, chemical and biological) Unit II Advances in Bioprocess Technology-II Animal biotechnology Primary cell culture and established cell lines Basic principles, Growth media, Cell viability Scale up of cultured cells and tissue Applications of cell culture: Vaccines, somatic cell fusion, valuable products. Plant Biotechnology Introduction Requirements for in vitro culture, Methods of plant cell and tissue culture Types of cultures of plant materials: explants, callus, organogenesis, root culture, shoot culture, micropropogation, suspension culture, protoplast culture, protoplast culture, protoplast culture, protoplast culture, protoplast of disease resistant plants, production of virus free plant, In vitro selection of cell lines for disease resistance, micropropogation, secondary metabolites from cell culture, transgenic plants for crop improvement Immobilized enzyme and cells Introduction and Definitions Methods, Immobilized Enzyme Reactors, Applications Unit III Quality Assurance, Quality Control, Instrumentation and Bioassay Modes of Fermentation Quality assurance, quality control and GMP		k. Membrane Processes	
The content of the		Drying	
I.2 Effluent treatment — Introduction, Dissolved oxygen concentration as indicator of water quality, The strength of fermentation effluents, Treatment process (Physical, chemical and biological) Unit II Advances in Bioprocess Technology-II Animal biotechnology Primary cell culture and established cell lines Basic principles, Growth media, Cell viability Scale up of cultured cells and tissue Applications of cell culture: Vaccines, somatic cell fusion, valuable products. Plant Biotechnology: Introduction Requirements for in vitro culture, Methods of plant cell and tissue culture Types of cultures of plant materials: explants, callus, organogenesis, root culture, shoot culture, micropropogation, suspension culture, protoplast culture, protoplast fusion and somatic hybridization. Applications: production of disease resistant plants, production of virus free plant, In vitro selection of cell lines for disease resistance, micropropogation, secondary metabolites from cell culture, transgenic plants for crop improvement Immobilized enzyme and cells Introduction and Definitions Methods, Immobilized Enzyme Reactors, Applications Unit III Quality Assurance, Quality Control, Instrumentation and Bioassay Modes of fermentation Quality assurance, quality control and GMP		Crystallization	
oxygen concentration as indicator of water quality, The strength of fermentation effluents, Treatment process (Physical, chemical and biological) Unit II Advances in Bioprocess Technology-II (15 Notional Primary cell culture and established cell lines Basic principles, Growth media, Cell viability Scale up of cultured cells and tissue Applications of cell culture: Vaccines, somatic cell fusion, valuable products. Plant Biotechnology: Introduction Requirements for in vitro culture, Methods of plant cell and tissue culture Types of cultures of plant materials: explants, callus, organogenesis, root culture, shoot culture, micropropogation, suspension culture, protoplast culture, protoplast fusion and somatic hybridization. Applications: production of disease resistant plants, production of virus free plant, In vitro selection of cell lines for disease resistance, micropropogation, secondary metabolites from cell culture, transgenic plants for crop improvement Immobilized enzyme and cells Introduction and Definitions Methods, Immobilized Enzyme Reactors, Applications Unit III Quality Assurance, Quality Control, Instrumentation and Bioassay Modes of fermentation Quality assurance, quality control and GMP		Whole Broth Processing	
Animal biotechnology Primary cell culture and established cell lines Basic principles, Growth media, Cell viability Scale up of cultured cells and tissue Applications of cell culture: Vaccines, somatic cell fusion, valuable products. Plant Biotechnology :Introduction Requirements for in vitro culture, Methods of plant cell and tissue culture Types of cultures of plant materials: explants, callus, organogenesis, root culture, shoot culture, micropropogation, suspension culture, protoplast culture, protoplast fusion and somatic hybridization. Applications: production of disease resistant plants, production of virus free plant, In vitro selection of cell lines for disease resistance, micropropogation, secondary metabolites from cell culture, transgenic plants for crop improvement Immobilized enzyme and cells Introduction and Definitions Methods, Immobilized Enzyme Reactors, Applications Unit III Quality Assurance, Quality Control, Instrumentation and Bioassay Modes of fermentation Quality assurance, quality control and GMP		oxygen concentration as indicator of water quality, The strength of fermentation effluents, Treatment process	
Primary cell culture and established cell lines Basic principles, Growth media, Cell viability Scale up of cultured cells and tissue Applications of cell culture: Vaccines, somatic cell fusion, valuable products. Plant Biotechnology: Introduction Requirements for in vitro culture, Methods of plant cell and tissue culture Types of cultures of plant materials: explants, callus, organogenesis, root culture, shoot culture, micropropogation, suspension culture, protoplast culture, protoplast fusion and somatic hybridization. Applications: production of disease resistant plants, production of virus free plant, In vitro selection of cell lines for disease resistance, micropropogation, secondary metabolites from cell culture, transgenic plants for crop improvement Immobilized enzyme and cells Introduction and Definitions Methods, Immobilized Enzyme Reactors, Applications Unit III Quality Assurance, Quality Control, Instrumentation and Bioassay Modes of fermentation Quality assurance, quality control and GMP	Unit II	Advances in Bioprocess Technology-II	
Requirements for in vitro culture, Methods of plant cell and tissue culture Types of cultures of plant materials: explants, callus, organogenesis, root culture, shoot culture, micropropogation, suspension culture, protoplast culture, protoplast fusion and somatic hybridization. Applications: production of disease resistant plants, production of virus free plant, In vitro selection of cell lines for disease resistance, micropropogation, secondary metabolites from cell culture, transgenic plants for crop improvement Immobilized enzyme and cells Introduction and Definitions Methods, Immobilized Enzyme Reactors, Applications Unit III Quality Assurance, Quality Control, Instrumentation and Bioassay Modes of fermentation Quality assurance, quality control and GMP		Primary cell culture and established cell lines Basic principles, Growth media, Cell viability Scale up of cultured cells and tissue Applications of cell culture: Vaccines, somatic cell	
Introduction and Definitions Methods, Immobilized Enzyme Reactors, Applications Unit III Quality Assurance, Quality Control, Instrumentation and Bioassay Modes of fermentation Quality assurance, quality control and GMP (15 Notional Hours)		Requirements for in vitro culture, Methods of plant cell and tissue culture Types of cultures of plant materials: explants, callus, organogenesis, root culture, shoot culture, micropropogation, suspension culture, protoplast culture, protoplast fusion and somatic hybridization. Applications: production of disease resistant plants, production of virus free plant, In vitro selection of cell lines for disease resistance, micropropogation, secondary metabolites from cell culture, transgenic	
and Bioassay Modes of fermentation Hours) Quality assurance, quality control and GMP		Introduction and Definitions Methods, Immobilized Enzyme Reactors,	
	Unit III	and Bioassay Modes of fermentation	`
a. Definitions, Chemical and pharmaceutical		Quality assurance, quality control and GMP	
		a. Definitions, Chemical and pharmaceutical	

products and	Variables	of batch	process

- Q.A and Q.C wrt.- Raw materials, method of manufacturing, in process items, finished products, label and labelling, packaging materials
- Control of microbial contamination during manufacturing
- d. Good Manufacturing Practices

3. 2. Sterilization control and assurance

Instrumentation: Principles, working and application of

- a. Spectrophotometry:
- b. UV, Visible
- c. IR
- d. AAS & AES
- e. Flame photometry
- f. Fluorimetry

Bio-assay

- a. Introduction
- b. Types: Diffusion, End Point, Turbidometric,
 Metabolic Response, Enzymatic

Unit IV Industrial Fermentations

Aminoglycoside: Streptomycin:

Aminoglycoside antibiotics, biosynthesis, regulation of biosynthesis, strain development, production method, recovery.

Vitamin B₁₂:

Occurrence and economic significance, structure, biosynthesis, production based on media containing carbohydrates by- *Propionibacteria* and *Pseudomonas*, recovery.

Glutamic acid:

Production strains, biosynthesis, effect of permeability on production, conditions of

(15 Notional Hours)

manufacturing, production process and recovery.

Mushroom cultivation (Agaricus):

Edible mushroom species, preparation of substratecomposting- phase I and phase II, Factors affecting composting, preparation of spawn, casing, induction of fruiting body formation, harvesting

Vaccine production:

Bacterial vaccine (TAB Vaccine) and Viral vaccine(Polio Vaccine)

Note: 1) Green Color: Topics related to Local/National/Regional & global development needs

2) Blue Color: Topics related to Employability/Entrepreneurship/Skill Development

3) Yellow Color: Topics related to professional ethics, gender, human values, Environment & Sustainability

Reference for UGMB604

Text books

- 1. Casida L. E., "Industrial Microbiology" (2009) Reprint, New Age International (P) Ltd, Publishers, New Delhi.
- 2. Stanbury P. F., Whitaker A. & Hall S. J., (1997), "Principles of Fermentation Technology", 2nd Edition, Aditya Books Pvt. Ltd, New Delhi.
- 3. Stanbury P. F., Whitaker A. & Hall S. J 3rd Edition (2017) "Principles of Fermentation Technology"
- 4. H. K. Das., "Text book of Biotechnology", 2nd and 3rd edition.
- 5. A textbook of biotechnology R. C. Dubey 4 th edition. S. Chand.
- 6. H. A. Modi, (2009). "Fermentation Technology" Vol. 1 & 2, Pointer Publications, India
- 7. Okafor Nduka (2007) "Modern Industrial Microbiology and Biotechnology", Science Publications Enfield, NH, USA.
- 8. Crueger W. and Crueger A. (2000) "Biotechnology -"A Textbook of Industrial
- 9. Microbiology, 2nd Edition, Panima Publishing Corporation, New Delhi.
- 10. Prescott and Dunn's 'Industrial Microbiology' (1982), 4th Edition, McMillan Publishers.
- 11. Veerakumari L. "Bioinstrumentation", MJP Publisher
- 12. Pharmaceutical Microbiology, Hugo and Russell, 7th edition, Blackwell Science.

Reference books

- 1. Peppler, H. J. and Perlman, D. (1979), "Microbial Technology". Vol 1 & 2, Academic Press.
- 2. Williams, Bryan L; Wilson, 2nd edition." A Biologist's guide to principles and techniques of practical biochemistry. Baltimore: University Park Press, 1981.

- 3. Wilson, Keith, 1936-; Goulding, Kenneth H, 3rd edition., A Biologist's guide to principles and techniques of practical biochemistry" London; Baltimore: E. Arnold, 1986.
- 4. Wilson and Walker, "Principles and techniques of practical biochemistry" 5th edition

Practical Syllabus Based on UGMB604

Course Code: UGMBP06/IV

- 1. Bioassay of an antibiotic (Streptomycin)
- 2. Bioassay of Vitamin B12 (Cyanocobalamin).
- 3. Perform immobilization of yeast cells for invertase activity making of beads, determination of activity and viable count by haemocytometer.
- 4. Plant tissue culture Callus culture
- 5. Sterility testing of inject able.
- 6. Preparation of TAB vaccine.
- 7. Estimation of phenol.
- 8. Industrial Visit