RAYAT SHIKSHAN SANSTHA'S KARMAVEER BHAURAO PATIL COLLEGE, VASHI NAVI MUMBAI [AUTONOMOUS COLLEGE]

DEPARTMENT OF MICROBIOLOGY

Program: B. Sc. Microbiology Course: S.Y.B.Sc.

Choice Based Credit and Grading System 2019-20

A/C-16/02/2019

Item No:2.36

Rayat Shikshan Sanstha's

KARMAVEER BHAURAO PATIL COLLEGE VASHI

(AUTONOMOUS COLLEGE)

Sector-15- A, Vashi, Navi Mumbai - 400 703

Syllabus for S.Y.B.Sc. Microbiology

Program: B.Sc. Microbiology

Course: S.Y.B.Sc. Microbiology

(Choice Based Credit, Grading and Semester System with effect from the academic year 2019-2020)

Preamble

Bachelor of Science (B.Sc.) in Microbiology is an under-graduation programme of Department of Microbiology, Karmaveer Bhaurao Patil College Vashi, Navi Mumbai [Autonomous College]

Microbiology is a branch of science that studies microorganisms such as bacteria, protozoa, algae, fungi, bacteria, viruses, etc. These studies integrate cytology, physiology, ecology, genetics and molecular biology, evolution, taxonomy and systematics with a focus on microorganisms.

The relevance and applications of microorganisms to the surrounding environment including human life and Mother Nature become part of this branch. Since the inception of this branch of science, Microbiology has remained a field of active research and ever-expanding in all possible directions; broadly categorized as pure and applied science.

Different branches of Pure Microbiology based on taxonomy are Bacteriology, Mycology, Protozoology and Parasitology, Phycology and Virology; with considerable overlap between these specific branches over each other and also with other disciplines of life sciences, like Biochemistry, Botany, Zoology, Cell Biology, Biotechnology, Nanotechnology, Bioinformatics, etc.

Areas in the applied Microbial Sciences can be identified as Medical, Pharmaceutical, Industrial (Fermentation, Pollution Control), Air, Water, Food and Dairy, Agriculture (Plant Pathology and Soil Microbiology), Veterinary, Environmental (Ecology, Geomicrobiology); and the technological aspects of these areas.

Microbiological tools have been extensively used to study different life processes and are cutting-edge technologies. There is a continual demand for microbiologists in the workforce in

education, industry and research. Career opportunities for graduate students are available in the manufacturing industry and research institutes at a technical level.

The content of a syllabus should be such that it maintains continuity with the course content of higher secondary classes and postgraduate courses. The present curriculum is made keeping this in mind and is an effort to impart fundamental knowledge of the subject needed at this level. The curriculum is designed as per the guidelines for Choice Based Credit System and reflects the total credit, teaching hours and evaluation pattern.

Objectives of the Course:

- 1. To enrich students' knowledge and train them in the pure microbial sciences
- 2. To introduce the concepts of application and research in Microbiology
- 3. To inculcate a sense of scientific responsibilities and social and environmental awareness
- 4. To help students' build up a progressive and successful career

Program Outcome [PO]

POs	PO-1	Disciplinary Knowledge:
		(i) Acquire the knowledge with facts and figures related to various subjects
		in pure sciences such as Physics, Chemistry, Mathematics, Microbiology
		and Computer Science; and Biotechnology, Information Technology and its
		other fields related to the program.
		(ii) Understand the basic concepts, fundamental principles, theoretical
		formulations and experimental findings and the scientific theories related to
		various scientific phenomena and their relevance in the day-to-day life.
	PO-2	Communication Skills: Develop various communication skills such as
		reading, listening and speaking skills etc., which we will help in expressing
		ideas and views clearly and effectively.
	PO-3	Critical Thinking: Think creatively to propose novel ideas in explaining
		the scientific data, facts and figures related to science and technology.
	PO-4	Analytical Reasoning and Problem Solving: Identity, describe, formulate,
		interpret, analyze the data systematically and solve theoretical and
		numerical problems in the diverse areas of science and technology and
		provide alternate solutions to the problems.
	PO-5	Sense of Inquiry: Curious for asking relevant questions like why and how
		for better understanding of the basic concepts, fundamental principles,
		scientific theories and applications related to the study.
	PO-6	Use of Modern Tools: Use of modern tools, equipment, instrumentation
		and laboratory techniques to design and perform the experiments and write
		the programs in different languages (software).
	PO-7	Research Skills: Ability to search for, find, collect, analyze, interpret and
		evaluate information/data that is relevant to the subjects related to
		science and technology being studied.
		5, 5
	PO-8	Application of Knowledge: Develop scientific outlook with respect to the
	100	subjects related to science and technology and also participate in various
		social and cultural activities.
	PO-9	Ethical Awareness: Imbibe ethical and social values in personal and social
		life leading to cultured and civilized personality.
	PO-10	Teamwork: Work effectively within the groups and individuals, participate
		and take initiative for various field-based situations related to science,

		technology and society at large.
	PO-11	Environment and Sustainability: Understand how developments in science and technology and interdisciplinary subjects are taking place for protecting our environment and sustainable developments.
	PO-12	Lifelong Learning: Ability of self-driven to explore, learn and gain knowledge and new skills to improve the quality of life and sense of self-worth by paying attention to the ideas and goals throughout the life.

Program Specific Outcomes [PSO's]

PSO_1: Understand the various aspects of the microbial world and the history of microbiology

PSO_2: Differentiate and classify different types of microorganisms and its characteristics

PSO_3: Distinguish between Prokaryotes and Eukaryotes with respective to their ultrastructure and functions

PSO_4: Understand & differentiate the requirement of nutrients and environmental conditions for the growth of microorganisms

PSO_5: Apply the knowledge of basic instrumentation, basic techniques in microbiology and control of microorganism

PSO_6: Explain and describe types and functions of different biomolecules found in living cells

PSO_7: Describe the aspects of microbial ecology and industrial microbiology

PSO_8: Illustrate the basic immunology and medical microbiology

Scheme of examination for Each Semester:

Continuous Internal Evaluation: 40 Marks (Common Test-20 Marks & 20 Marks for-

Assignment, Projects, Group discussion, Open book test, online test, Societal awareness activity etc based on Unit III of each paper.

Semester End Examination: 60 Marks will be as follows -

	Theory: The Semester End Examination for theory course work will be conducted							
	as per the following scheme.							
	Each theory paper shall be of two hours duration.							
	All questio	ns are compulsory and will have internal options.						
I.	Q – I Subject questions from Unit – I (having internal options.) 20 M							
	Q – II	Subjective questions from Unit – II (having internal options.)20 M						
	Q – III	Objective type questions based on both the Units with equal weightage. 20 M						
П.	Practical	The Semester End Examination for practical course work will be Conducted as per the following scheme.						

Sr. No.	Particulars of Semester End Practical Examination	Marks%
1	Laboratory Work	80
2	Journal	10
3	Viva	10
	TOTAL	100

S.Y.B.Sc. Microbiology Syllabus (Semester III and IV) Revised for Choice Based Credit and Grading System Academic year 2019-2020 SEMESTER III

Theory:

Course Code	UNIT	TOPIC HEADINGS	Credits	NH/
				Week
UGMB301	Ι	Introduction to Metabolism &		
Biochemistry and		Bioenergetics		
Genetics	II	Estimation of Biomolecules	03	03
	III	Basic of Genetics		

Course Code	UNIT	TOPIC HEADINGS	Credits	NH/ Week
UGMB302 Introduction to Medical Microbiology and Microbial Taxonomy	I II III	Common Infectious Diseases, Epidemiology and Public Health Diagnostic and Clinical Microbiology Microbial Taxonomy	03	03

Course Code	UNIT	TOPIC HEADINGS	Credits	NH / Week
UGMB303	I	Air Microbiology		
Environmental	II	Water Microbiology	03	03
Microbiology	III	Soil and Geomicrobiology		

Practical:

Course Code	UNIT	TOPIC HEADINGS	Credits	NH/
				Week
UGMBP301, 302	Ι	Metabolism and Genetics		
and 303	II	Introduction to Medical Microbiology	03	09
		and Microbial Taxonomy		
	III	Environmental Microbiology		

SEMESTER IV

Theory:

Course Code	UNIT	TOPIC HEADINGS	Credits	NH/ Week
UGMB401	Ι	Microbial growth & Microbial		
Biochemistry &		Biochemistry	03	03
Basic Analytical	II	Enzyme Kinetics		
Techniques	IIII	Analytical Techniques		

Course Code	UNIT	TOPIC HEADINGS	Credits	NH/ Week
UGMB402	Ι	Medical Microbiology		
Medical	II	Innate Immunity & Immune		
microbiology and		System	03	03
Biodiversity	III	Biodiversity in Extreme		
		Environments		

Course Code	UNIT	TOPIC HEADINGS	Credits	NH/
				Week
UGMB403	I	Dairy Microbiology		
Applied	Ш	Food Microbiology	0.2	02
Microbiology	1111	Bioprocess Technology	03	03

Practical:

Practical

Course Code	UNIT	TOPIC HEADINGS	Credits	NH / Week
UGMBP 401, 402 and 403	1 11	Microbial growth, Biochemistry & Basic Analytical Techniques Medical microbiology and Biodiversity Applied Microbiology	03	09

Note: 1) Green Color: Topics related to Local/National/Regional & global development needs

2) Blue Color: Topics related to Employability/Entrepreneurship/Skill Development

3) Yellow Color: Topics related to professional ethics, gender, human values, Environment & Sustainability

UGMB301: Biochemistry and Genetics

Course Outcome:

By the end of the course, the learner will be able to-

CO1: Schematically represent Metabolic Pathways [4] * & Organic reaction mechanism[4] *
CO2: Describe and diagrammatically represent carbohydrate metabolic reactions as
Glycolysis, HMP & TCA cycle.[5]*
CO3: Illustrate the skills on estimation Biomolecules &Analytical Techniques[4] *
CO4: Explain Mendelian genetics [3] *
CO5: Schematically/diagrammatically represent the organization of chromosomes in
Prokaryotes and Eukaryotes [4] *
CO6: Explain the characteristics of Genetic code[3] *

SEMESTER III Paper I		
Course Code	Title	Credits
UGMB-301	Biochemistry and Genetics	03 Credits (45 lectures)
UNIT I	 1.Introduction to Metabolism & Bioenergetics 1.1 Introduction to metabolism, Metabolic pathways 1.2 Organic reaction mechanism 1.3 Experimental approaches to study metabolism 1.4 Thermodynamics of Phosphate compounds 1.5 Oxidation-reduction reactions 1.6 Thermodynamics of life 1.8 Carbohydrate metabolism (With structures) Glycolysis (EMP) HMP Pathway TCA cycle 	15 Lectures
Unit-II	 2. Estimation of Biomolecules 2.1 Macromolecular composition of a Microbial cell. 2.2 Methods of elemental analysis: Carbon, Nitrogen and Phosphorus 2.3 Estimation of Proteins and amino acids 	15 Lectures

	Proteins by Biuret method (Direct and indirect) Amino acids by Ninhydrin method 2.4 Estimation of Carbohydrates Total carbohydrates by Anthronemethod Reducing Sugars (maltose) by DNSA method Reducing sugar Felhing's method 2.5 Extraction of Lipids by Soxhlet method 2.6 Estimation of Nucleic acids General principles and extraction of Nucleic acids DNA by DPA method RNA by Orcinol method	
Unit-III	 3. Basic of Genetics 3.1 Mendelian genetics 3.2 Chromosomal organization in both eukaryotic and prokaryotic organisms. 3.3 Genetic code and process. 3.4 Central dogma of life. 3.5 Transcription Prokaryotic transcription apparatus 3.6 Translation, Translation apparatus and process 	15 Lectures

Note: 1) Green Color: Topics related to Local/National/Regional & global development needs

- 2) Blue Color: Topics related to Employability/Entrepreneurship/Skill Development
- 3) Yellow Color: Topics related to professional ethics, gender, human values, Environment & Sustainability

REFERENCES: UGMB301

- 1. Methods in Microbiology, Vol.5B, Edition. Norris & Ribbon, Academic Press
- Lehninger: Principles of Biochemistry,4th Ed., D. Nelson &M. Cox, W. H. Freeman & Co., New York 2005
- 3. Outlines of Biochemistry, 5/E, Conn P. Stumpf, G. Bruening & R. Doi, John Wiley & Sons, New York, 1995
- 4. Enzymes: Biochemistry, Biotechnology& Clinical Chemistry, T. Palmer, East West Press Ltd., New Delhi2004
- 5. An Introduction to Practical Biochemistry, David Plummer, 3rd Edition (2003), Tata McGraw-Hill Publishing Co.Ltd.
- 6. Biochemical Methods, S. Sadasivam & A. Manickam, 2nd Edition (1996), New Age International (P) Ltd.
- 7. Laboratory Manual in Biochemistry, J. Jayraman
- 8. iGenetics by Peter Russell, 3rd edition
- 9. Brock biology of microorganism by Michael T Madigan& John M Martinco, Pearson education

UGMBP301	(Practical Based on Unit-I, II & III of UGMB301)	Credits
UNIT I	 Study of biochemical pathway and study of end product and its characterization. a) Lysine Decarboxylase b) Oxidative and fermentative utilization of glucose by microbes c) Detection of homo and heterofermentative lactic acid fermentation 	1 Credit
UNIT II	 2. Estimation of total sugar by Anthrone (Demonstration) 3. Estimation of reducing sugar by DNSA method 4. Estimation of reducing method by Fehling's Method 5. Estimation of protein Biuret method (indirect and direct). 6. Extraction of lipid by Soxhlet method (Demonstration) 	
UNIT III	7. Problems on laws of Mendelian genetics8. Problems on Genetic code]

UGMB302: Introduction to Medical Microbiology and Microbial Taxonomy

Course Outcome: By the end of the course, the learner will be able to-

CO1: Distinguish between vectors and vehicles and comprehend methods of control of diseases. [4]*

CO2: Examine infections caused by <u>Staphylococci</u>, <u>Streptococci</u>, <u>Salmonella</u> and <u>Escherichia coli</u> and elaborate on different prevention, control and treatment methods for skin and gut infections. [4]*

CO3: Apply Biochemical tests, understand its purpose and select it for microbial identification and characterization. [3]*

CO4: Compare the traditional methods with rapid methods and understand their advantages and drawbacks. [5]

CO5: Paraphrase microbial taxonomy and importance in research and elaborate on Numerical Taxonomy.[2]*

CO6: Evaluate the origins of Bergey's Manual of Systematic Bacteriology and its relevance in taxonomy. [5]*

SEMESTER III Paper II		
Course Code	Title	Credits
UGMB-302	Common Infectious Diseases, Epidemiology and Public Health Awareness	03 Credits (45 lectures)
UNIT I	 A] The Epidemiology of Infectious Disease: 1.1 Epidemiological Terminology: Epidemiology, sporadic disease, endemic disease, hyper endemic disease, epidemic disease, index case, pandemic disease, outbreak 1.2 The spread of infection: (Revision) a) Reservoirs of infection –human reservoirs, animal reservoirs, non-living reservoirs b) Transmission of disease- Contact transmission, Vehicle transmission, Vectors 1.3 Public Health Measures for the Control of Disease: Controls directed against the Reservoir, Controls Directed against Transmission of the Pathogen, Immunization, Quarantine, Surveillance, Pathogen Eradication 	15 Lectures
	 B. Common Infectious Diseases: 1.4 Skin infections: Study of structure and functions of Skin: Study of skin infections caused by <i>Streptococcus</i> and <i>Staphylococcus</i>. 1.5 Infections of Digestive system: Study of structure and functions of Digestive system Study of digestive system infections caused by <i>Salmonellaspecies</i>, <i>E.coli</i> 	
Unit-II	 2. Diagnostic and Clinical Microbiology 2.1 Overview of the Clinical Microbiology Laboratory 2.2 Isolation of Pathogens from clinical specimens: a) Growth media and Culture b) Collection of specimens, handling and transport c) Types of specimens and their culture: - Blood, Urine, Feces, sputum, Cerebrospinal fluid, pus, genital and culture of Anaerobes. 2.3 Identification of microorganisms from specimens: a) Microscopy b) Growth-Dependent Identification Methods 2.4 Common Biochemical tests (Metabolic finger printing) 2.5 Rapid Methods of Identification 2.6 Bacteriophage Typing 	15 Lectures

Unit-III	Microbial Taxonomy	15 Lectures
	3.1 Introduction to microbial Taxonomy	
	3.2 Taxonomic ranks	
	3.3 Techniques for determining	
	Microbial Taxonomy and Phylogeny:	
	(a) Microscopic & macroscopic	
	morphology and biochemical characteristics,	
	(b) Chemical Analysis,	
	(c) Serological analysis,	
	(d) Genetic & molecular analysis: -	
	(i) RNA sequencing and finger printing,	
	(ii) G+C content,	
	(iii) DNA sequencing,	
	(iv) DNA-DNA hybridization	
	3.4 Phylogenetic Trees	
	(a) Types,	
	(b) Construction (an overview)	
	3.5 Numerical Taxonomy	
	(a) Grouping by numerical methods of taxonomic units,	
	(b) Phylogenetic inferences	
	3.6 Bergey's Manual of Systematic Bacteriology	

Note: 1) Green Color: Topics related to Local/National/Regional & global development needs

- 2) Blue Color: Topics related to Employability/Entrepreneurship/Skill Development
- 3) Yellow Color: Topics related to professional ethics, gender, human values, Environment & Sustainability

REFERENCES: USMB 302

- 1. Microbiology, an Introduction by Tortora, Funke & Case 9th and 11th edition, Pearson education.
- 2. Bailey and Scott's Diagnostic Microbiology, 11th edition Publ: Mosby
- 3. Ananthnarayan& Paniker's Textbook of Microbiology, 8th Ed.
- 4. Mackie and McCartney Practical medical microbiology 14th edition, Publication: Churchill Livingstone
- 5. Brock biology of microorganism by Michael T Madigan& John M Martinco, Pearson education
- 6. Prescott's Microbiology, 8th Edition; Joanne M. Willey, Linda M. Sherwood, Christopher J. Woolverton, 2011, McGraw Hill International Edition
- 7. Immunology Essential and Fundamental, Third Edition, Pathak and Palan, Pareen Publishers

Practical Paper: Introduction to Medical Microbiology and Microbial Taxonomy

UGMBP302	Practical Based on Unit-I, II & III	Credit
Unit-I, II & III	 Assignment on Epidemiology, Public Health Measures for the Control of Disease Study the morphological, cultural and biochemical characteristics of <i>Staphylococcus</i> and <i>Streptococcus</i> species (w.r.t.Skin infections) Study the morphological, cultural and biochemical characteristics of <i>E. coli</i> and <i>Salmonella species</i> (w.r.t.Digestive system infections) Study of different biochemical tests w.r.t. Catalase, Oxidase, Motility, Indole Production test, Methyl Red Test, Vogues Proskauer Test, Citrate utilization Test, Nitrate Reduction Test, Carbohydrate Utilization Test, TSI Test, Bile solubility Test Identification of Bacteria from soil and water source (Using Bergey's Manual of Determinative Bacteriology) 	1 Credit

UGMB303: Environmental Microbiology

Course Outcome: By the end of the course, the learner will be able to-

CO1: Choose a device for sampling and a method for detecting microorganisms from the air. [5]*

CO2: Discuss air sanitation methods [2]*

CO3: Schematically explain the water purification system and wastewater treatment. [4]*

CO4: Justify the impact of marine microorganisms. [5]*

CO5: Summarize soil sampling and cultural methods to study soil flora. [2]*

CO6: Compare and contrast between physiological methods & immunological methods to study soil flora [4]*

SEMESTER III Paper III		
Course Code	Title	Credits
UGMB-303	Environmental Microbiology	03 Credits (45 lectures)
UNIT I	 1.Air Microbiology Aero microbiology: a. Important airborne pathogens and toxins b. Aerosols and nature of bioaerosols c. Aeromicrobiological pathway d. Microbial survival in the air e. Extramural aeromicrobiology f. Intramural aeromicrobiology 1.2 a. Sampling Devices for the Collection of Air Samples b. Detection of microorganisms on fomites 1.3 Air Sanitation 1.4 Air Quality Standards 1.5 Introduction to exobiology – a. Introduction b. Case study 	15 Lectures
Unit-II	 2.Water Microbiology 2.1 Fresh water environments and micro-organisms found in Springs, rivers and streams, Lakes, marshes and bogs 2.2 Potable water: Definition, water purification, water quality standards (WHO and BIS standards) and pathogens transmitted through water 2.3 Microbiological analysis of water: Indicator organisms and their detection in water, Total Coliforms, Fecal Coliforms and E. coli, Fecal Streptococci, Clostridium perfringens B] Sewage Microbiology 2.4 Modern Wastewater treatment: Primary, Secondary and Tertiary Treatment 2.5 Nature of wastewater and Monitoring of wastewater treatment process (BOD and COD) 2.6 Removal of Pathogens by Sewage treatment Processes 2.7 Oxidation Ponds and Septic tanks 2.8. Sludge Processing 2.9. Disposal of treated wastewater and biosolids. 2.10 Study of wastewater index, Rules and regulations for disposal of 	15 Lectures

	 C] Marine Microbiology 2.10 Zonation in Marine water body 2.11. Kinds of Microorganisms in marine environment 2.12 Role and impact of marine microorganisms 	
Unit-III	 3. Soil and Geomicrobiology 3.1 Terrestrial Environment Soil – Definition, Composition and function Textural triangle Types of soil microorganisms and their activities 3.2 Methods of studying soil microorganisms: Sampling and Cultural methods, Physiological methods Immunological methods Nucleic acid-based methods Radioisotope techniques 3.3 Biogeochemical Cycles: Carbon cycle Nitrogen cycle Sulphur cycle Phosphorus Cycle Iron cycle 	15 Lectures

Note: 1) Green Color: Topics related to Local/National/Regional & global development needs

- 2) Blue Color: Topics related to Employability/Entrepreneurship/Skill Development
- 3) Yellow Color: Topics related to professional ethics, gender, human values, Environment & Sustainability

REFERENCES: UGMB303

- 1. Environmental Microbiology, 2nd Edition; Raina M. Maier, Ian L. Pepper, Charles P. Gerba, 2010 Academic Press
- 2. Fundamental Principles of Bacteriology, 7th Edition; A.J. Salle, Tata McGraw Hill Publishing Company
- 3. Air Quality Standards- NAAQS Manual, Volume I
- 4. Prescott's Microbiology, 8th Edition; Joanne M. Willey, Linda M. Sherwood, Christopher J. Woolverton, 2011, McGraw Hill International Edition
- 5. Fundamentals of Microbiology, 9th Edition, Frobisher, Hinsdill, Crabtree, Goodheart, 1974, Saunders College Publishing
- 6. Introduction to Environmental Microbiology Barbara Kolwzan, WaldemarAdamiak (E Book)
- 7. Soil Microbiology-4th Edition, N.S Subba Rao,2000, Oxford and IBH Publishing Co. Pvt. Ltd

Practical Paper: Environmental Microbiology

UGMBP303	Practical Based on Unit-I, II & III	Credit
Unit I	1. Enumeration of microorganisms in air and study of	
	its load after fumigation	
	2. Study of air microflora and determination of	
	sedimentation rate	
Unit II	3. Routine analysis of water:	
	a. Detection of Coliforms in water: Presumptive Test,	
	Confirmed Test and Completed Test	
	b. Rapid Detection of <i>E. coli</i> by MUG Technique	
	(Demonstration)	
	4. Waste water analysis:	
	a. Study of microbial flora in raw and treated sewage	1 Credit
	b. Determination of total solids in waste water	
	c. Determination of BOD and COD of waste water	
	5. Presentation on "Water Recycling" (By students)	
	6. Guidelines and limits of MPCB	
	7. Study of microorganisms in sea water	
Unit III	6. Total viable count of soil microflora	
	7. Isolation of bacteria, Actinomycetes and fungi from	
	soil	
	9. Winogradskys column (Demo)	
	10. Visit to a sewage treatment plant or water	
	purification plant	
	11. Analysis of sewage water	
	collected from different regions (Pollution Index)	

SEMESTER IV

UGMB401: Microbial growth, Biochemistry & Basic Analytical Techniques

Course Outcome: By the end of the course, the learner will be able to-

CO1: Describe the microbial growth & its measurement.[2]*

CO2: Describe and distinguish between various types of Transport mechanisms of various essential nutrients involved in the metabolism of a cell.[4]*

CO3: Illustrate/derive Michaelis-Menten equation & Lineweaver Burk plot.[3]*

CO4: Describe and diagrammatically represent Allosteric effects in enzyme catalyzed reactions.[4]*

CO5: Understand the general principle & diverse types of analytical techniques *viz*. Chromatography, Centrifugation, Electrophoresis.[4]*

CO6: Describe & schematically/diagrammatically represent the analysis of Biomolecules with respect to analytical techniques *viz*. Chromatography, Centrifugation, Electrophoresis.[4]*

	SEMESTER IV Paper I		
Course Code	Title	Credits	
UGMB-401	Microbial growth, Biochemistry & Basic Analytical Techniques	03 Credits (45 lectures)	
UNIT I	 1. Microbial Biochemistry 1.1 Microbial growth Definition, Measurement of growth, Diauxic growth Measurements of cell constituents, Turbidity measurements, Synchronous growth, Continuous growth (Chemostast and turbidostat). 1.2 Solute Transport (With mechanism) Passive transport Active transport Facilitated diffusion Group translocation 1.3 Bioluminescence Brief survey of bioluminescent systems Biochemistry of light emission Schematic diagram 	15 Lectures	
Unit-II	Significance / Application 2. Enzyme Kinetics	15 Lectures	
	 2.1 Introduction of Enzymes: General properties of enzymes How do enzymes accelerate reaction? Rate law for a simple catalyzed reaction, Michaelis-Menten equation and it's derivation Lineweaver Burk plot Classification of enzymes 2.2 Overview of Coenzyme: Coenzymes: Different types and reactions catalyzed by coenzymes (in tabular form) Nicotinic acid: structure, occurrence & biochemical Function 2.3 Enzyme Kinetics: Saturation kinetics Effect of temperature and pH Effect of Inhibitors- Reversible and irreversible, competitive, Non-competitive and uncompetitive Inhibitors Multisubstrate reactions- Ordered, Random and Ping-Pong reactions Allosteric effects in enzyme catalyzed reactions- Koshland-Nemethy and Filmer model & Monod, Wyman and Changeux model 		

Unit-III	3. Analytical techniques	15 Lectures
	3.1 Chromatography	
	Introduction to chromatography, types of	
	Chromatography	
	Paper chromatography: Principle, circular, ascending	
	and descending Paper Chromatography, Separation of	
	amino acids and monosaccharides by Paper	
	Chromatography.	
	Thin layer chromatography: principle, preparation of	
	TLC plates, procedure for TLC, preparative TLC, 2D	
	TLC [one paragraph], HPTLC- [1 page],	
	Separation of amino acids and sugars by TLC.	
	Column chromatography: Introduction & principle	
	Exclusion chromatography, gel chromatography	
	3.2 Centrifugation	
	Introduction: basic principles of sedimentation	
	Types, care and safety aspects of centrifuges, types of	
	rotors, care and maintenance, safety & centrifugation	
	Preparative centrifugation & its applications,	
	Analytical centrifugation and its application	
	3.3 Electrophoresis	
	General principles, support media Agarose gels,	
	polyacrylamide gels	

Note: 1) Green Color: Topics related to Local/National/Regional & global development needs
 2) Blue Color: Topics related to Employability/Entrepreneurship/Skill Development
 3) Yellow Color: Topics related to professional ethics, gender, human values, Environment & Sustainability

REFERENCES: UGMB 401

- 1. Principles of Biochemistry- G. Zubay, W.W. Parson, D.E. Vance. Wm. C. Brown Publishers
- 2. Fundamentals of Biochemistry. D. Voet and J. Voet Publisher Wiley plus Edition 5th.
- 3. Lehninger- Principles of Biochemistry- David Nelson, Michael Cox. 4th edition W.H. Freeman & Company
- 4. Instrumental Methods of chemical analysis, V.K. Ahluwalia, Ane Books Pvt.Ltd; 2015.
- 5. Principles & techniques of Biochemistry &Mol biology 6th edition, Keith Wilson & John Walker, Cambridge University press, 2006
- 6. Laboratory manual in Biochemistry- J. Jayaraman

Practical paper: Metabolism & Basic Analytical Techniques

UGMBP401	Practical Based on Unit-I, II & III	Credit
Unit-I, II & III	 Qualitative detection of Amylase, Lipase, Protease and Cellulase enzyme production Extracellular production of Invertase enzyme by <i>Saccharomyces</i> <i>cerevisiae</i> Determination of pH optima of Invertase enzyme activity Determination of Temperature optima of Invertase enzyme activity Determination of Enzyme concentration on Invertase enzyme activity Determination of Km and Vmax value of Invertase enzyme (Michaelis Menton & Lineweaver Burk Plot) Separation of Amino acids by Paper Chromatography Separation of Amino acids by Thin Layer Chromatography (Demonstration) Sizing of bacterial and yeast cells by Density Gradient Centrifugation Separation and visualization of Plasmid DNA by Agarose Gel Electrophoresis (Demo) Isolation and study of Bioluminescent bacteria from Raja-Rani fish Study of growth curve of <i>E. coli</i> in minimal and complete medium 	1 Credit

Note: 1) Green Color: Topics related to Local/National/Regional & global development needs

2) Blue Color: Topics related to Employability/Entrepreneurship/Skill Development

3) Yellow Color: Topics related to professional ethics, gender, human values, Environment & Sustainability

UGMB402: Medical Microbiology and Biodiversity

Course Outcome: By the end of the course, the learner will be able to-

CO1: Illustrate different conditions of the respiratory tract and nervous system and their relation to systemic infections. [3]*

CO2: Evaluate and compare different methods of diagnosis of pathogens. [5]*

CO3: Distinguish different barriers of the immune system and their significance. [4]*

CO4: Illustrate various cells of the immune system and enlist different functions

CO5: Distinguish between various Extremophiles growing in different extreme environments.[4]*

CO6: Account for the molecular adaption in Extremophiles [2]*

SEMESTER IV Paper II		
Course Code	Title	Credits
UGMB-402	MEDICAL MICROBIOLOGY AND BIODIVERSITY	03 Credits (45 lectures)
UNIT I	 Medical Microbiology Infections of Respiratory Tract: Streptococcal and Pneumococcal infections: Morphology, cultural characteristics of a pathogen, factors involved in pathogenesis and pathogenicity, laboratory diagnosis Infections of Nervous system: Study of structure and functions of Nervous System, Study of Tetanus and Rabies Introduction to Nosocomial infections 	15 Lectures

Unit-II	 2. Innate Immunity & Immune System 2.1 Basic concepts in Immunology-Revision 2.2 Principles of Innate & adaptive immunity-Primary, Secondary & Tertiary Barriers 2.3 Components of the immune system-Cells and organs of the immune system 2.4 Phagocytosis and inflammation-Mechanisms and link to immunity 	15 Lectures
	2.5 Pattern recognition in innate immune system-PAMPs, PRRs, TLRs	
Unit-III	 3. Biodiversity in Extreme Environments 3.1 Extreme Environments and their types with respect to the physical conditions which lead to microbial stress. a) Temperature based environments- Low and high temperature environments b) pH-based environments- Acidic and alkaline environments, Acid mine drainage. c) Environments with high salt concentration. 3.2 Microbial Physiology of the extremophiles a) Examples of extremophiles in each environment with their morphology and cultural characteristics. b) Physiology of the extremophiles in each environment. c) Molecular adaptations of the extremophiles 3.3 Applications of Acidophiles and Alkalophiles b) Applications of psychrophiles in pharmaceuticals and environment. d) Applications of thermophiles and hyperthermophiles in industries 	15 Lectures

References:

- 1. Biology of Microorganisms by BROCK Twelfth Edition, Martinco Dunlap Clark 16 Pearson International Edition
- 2. Text book of Microbiology by Ananthnarayan and Panikar
- 3. Microbiology: An Introduction by Tortora, Funke, Case (International Edition, Eighth Edition)
- 4. Immunology Essential and Fundamental, Third Edition, Pathak and Palan, Pareen Publishers.
- 5. Prescott's Microbiology: 8th Edition; Joanne M. Willey, Linda M. Sherwood, Christopher J. Woolverton, McGraw Hill International Edition
- 6. Microbiology an Introduction: 9th Edition; Gerard J. Tortora, Berdell R. Funke, Christine L. Case, Pearson Education Course

Practical Paper: MEDICAL MICROBIOLOGY AND BIODIVERSITY

UGMBP402	Practical Based on Unit-I, II & III	Credit
Unit-I, II & III	 Study morphological, cultural and biochemical characteristic of <i>Streptococcal</i> species from respiratory system Study morphological, cultural and biochemical characteristic of <i>Pseudomonas</i> species from respiratory system. Simulation studies of strains from fomites Collection of Blood sample (Demonstration) Differential staining of Blood smear by Field's Method Separation of Plasma and serum from Blood Demonstration of phagocytosis Study of Immunodiffusion (Antigen-Antibody Reaction) Isolation of salt tolerating bacteria (Halophiles) from Marine environment Enrichment of thermophilic bacteria (Thermophiles) from hot water springs Enrichment of Acidophiles and Alkalophiles from environment Visit to pathology laboratory and Report writing 	1 Credit

Note: 1) Green Color: Topics related to Local/National/Regional & global development needs

- 2) Blue Color: Topics related to Employability/Entrepreneurship/Skill Development
- 3) Yellow Color: Topics related to professional ethics, gender, human values, Environment & Sustainability

UGMB403 - Applied Microbiology

Course Outcome: By the end of the course, the learner will be able to-

CO1: Justify various ill effects of microbial contamination in Milk. [5]*

CO2: Categorize different types of dairy products & diagrammatically/ schematically

represent dairy products [4]*

CO3: Justify food as a substrate for Microorganism[5]*

CO4: Describe methods of preservation of Industrial cultures. [2]*

CO5: Describe characteristics of ideal production medium, types of production media, raw materials used for and sterilization of production media. [2]*

CO6: Schematically represent the production process of Ethanol, Citric acid and Beer. [4]*

SEMESTER IV Paper III		
Course Code	Title	Credits
UGMB-403	APPLIED MICROBIOLOGY	03 Credits (45 lectures)
UNITI	 1. Dairy Microbiology 1.1. Constituents and properties of milk 1.2 Microflora of raw milk Effect of microbial contamination in Milk 1.3 Control of microorganisms in milk Microbial analysis of raw milk 1.4 Processing of market milk B] Milk Products 1.5 Butter Production 1.6 Cheese production: Cheddar, Cottage and Swiss Cheese 1.7 Dahi (Curd) 1.8 Milk powder and dry whey 1.9 Evaporated milk and Condensed milk 	15 Lectures

Unit-II	2.Food Microbiology	15 Lectures
	 2.1 Introduction: Food microbiology and food Food as a substrate for microorganism a. pH, aw, O-R potential b. Nutrient Content 	
	 c. Accessory food substances d. Inhibitory substances & biological structure e. Combined effects of factors affecting growth 2.2 Important Microorganisms in Food Microbiology: A] Spoilage –causingmicroorganisms 	
	 a. Yeast & Molds: Saccharomyces, Aspergillus& Penicillium b. Bacteria: Bacillus, Clostridium, Flavobacterium, Pseudomonas B] Food-borne Illness associated Microorganisms: 	
	 Classification of Food-borne diseases (Schematic). Bacteria responsible for food -borne intoxication and infections-overview/tabulation. Examples of nonbacterial food-borne pathogens Details of: 	
	a) Staphylococcus food intoxication (organism, enterotoxin, incidence, foods involved, prevention of outbreaks) b) Salmonellosis (organism, source,	
	 incidence, foods involved, outbreak conditions & prevention) c) Starter Cultures: Significance and examples 2.3 Food Spoilage, General Principles of spoilage of: 	
	 a) Fruits and vegetables b) Meat (including spoilage under aerobic & anaerobic conditions- exclude spoilage of different kinds of meats) <i>Listeria monocytogens</i> c) Seafood, Shellfish by <i>E.coli</i> 	
	 d) Canned foods 2.4 General Principles of Food Preservation: a) Preservation using High temperature (including TDT, D, F, Z values, 12D concept), principle of canning b) Low temperature c) Drying 	
	 d) Food preservatives (organic acids & their salts, Sugar & salt) e) Ionizing radiations f) Hurdle Technology 	

Unit-III	3.Bioprocess Technology	15 Lectures
	Upstream processes	
	3.1 Fermentation media:	
	Characteristics of ideal production medium, Types of	
	production media, Raw materials used for and	
	sterilization of production media	
	3.2 Industrial stain: Characteristics of ideal Industrial stain.	
	Screening of Industrial stain	
	Example of screening antibiotic producers, organic	
	acid producers and amino acid producers	
	3.3 Culture collection centers	
	3.4 Preservation of industrial cultures	
	3.5 Preparation of inoculums	
	3.6 Fermenter: Characteristics of idealfermenter	
	STR: Design of STR and its applications	
	3.7 Ethanol production	
	3.8 Citric acid fermentation	
	3.9 Beer fermentation	

Note: 1) Green Color: Topics related to Local/National/Regional & global development needs

- 2) Blue Color: Topics related to Employability/Entrepreneurship/Skill Development
- 3) Yellow Color: Topics related to professional ethics, gender, human values, Environment & Sustainability

REFERENCES: USMB 403

- 1. Fundamental Food Microbiology by Bibek Ray, Arun Bhunia (2007), 4th edition CRC Press
- 2. Food Microbiology An Introduction by Montville and Mathews, (2008), ASM Press
- 3. Industrial Microbiology by Waites and Morgan, Blackwell Science
- 4. Modern Industrial Microbiology and Biotechnology by Nduka Okafor, (2007), Science Publishers.
- 5. Food Science by Sumati R. Mudambi, Shalini Rao, M.V. Rajagopal, revised 2nd edition, (2006), New Age international publications.
- 6. Prescott's Microbiology by J.M. Willey, L.M. Sherwood, C.J. Woolverton, (2011) 8th edition, McGraw-Hill International edition
- 7. Prescott, Harley and Klein's Microbiology by Willey, Sherwood, Woolverton, (2008) 7th edition, McGraw-Hill International edition
- 8. Brock Biology of Microorganisms by Madigan, Martinko, Dunlap and Clark (2009) 12th edition, Pearson Education.
- 9. Microbiology an Introduction: 9th Edition; Gerard J. Tortora, Berdell R. Funke, Christine L. Case, Pearson Education Course
- 10. Food Microbiology by Frazier 5th edition
- 11. Modern Food Microbiology by James Jay 6th edition
- 12. Applied Dairy Microbiology by Martha & Steele
- 13. BIS standards, FSSAI
- 14. Food Microbiology by Frazier

Practical Paper: Applied Microbiology

UGMBP403	Practical Based on Unit-I, II & III	Credit
	1. Isolation of antibiotic producers from soil.	
	2. Auxanography	
	3. Isolation of food spoilage agent	
	4. Determination of TDT and TDP	
Unit I, II	5. Determination of Salt and sugar tolerance	1 Credit
and III	6. Determination of MIC of preservatives	
	7. Visit to Food/Dairy industry	
	8. Rapid platform tests of raw and pasteurized milk.	
	9. Microbiological analysis of raw and pasteurized Milk.	
	10. Microbiological analysis of Butter and Cheese (group	
	project)	
	11. Study natural fermentation of raw milk (24 hours)	
	12. Nutritional labeling, BIS, FSSAI	