Rayat Shikshan Sanstha's

Karmaveer Bhaurao Patil College Vashi, Navi Mumbai

(Autonomous)

Name of Program: Master of Science

Program Outcomes (POs)

		A substitution of the semination and in death knowledge of various
P01	Disciplinary Knowledge	Acquire the comprehensive and in-depth knowledge of various subjects in sciences such as Physics, Chemistry, Mathematics, Microbiology, Bio-analytical Science, Computer Science, Data Science, Information Technology and disciplinary skills and ability to apply these skills in the field of science, technology and its allied
		branches.
PO2	Communication Skills and Presentation skills	Develop various communication skills including presentation to express ideas evidently to achieve common goals of the organization.
DOD	Creativity and	Facilitate solutions to current issues based on investigations,
P03	Critical Judgement	evaluation and justification using evidence-based approach.
	Analytical	
	Reasoning and	Build critical and analytical attitude in handling the problems and
P04	Problem	situations.
	Solving	
P05	Sense of Inquiry	Curiously raise relevant questions based on highly developed ideas, scientific theories and its applications including research.
P06	Use of Modern Tools	Use various digital technologies to explore information/data for business, scientific research and related purposes.
P07	Research Skills	Construct, collect, investigates, evaluate and interpret information/data relevant to science and technology to adapt, evolve and shape the future.
P08	Application of Knowledge	Develop scientific outlook to create consciousness against the social myths and blind faith.
P09	Moral and Ethical Reasoning	Imbibe ethical, moral and social values to develop virtues such as justice, generosity and charity as beneficial to individuals and society at large.
P010	Leadership and Teamwork	Work cooperatively and lead proactively to achieve the goals of the organization by implementing the plans and projects in various field-based situations related to science, technology and society at large.
P011	Environment and	Create social awareness about environment and develop
	JustamaDinty	Dealing that purguit of impuried go is a lifeland activity and in
P012	Lifelong Learning	combination with determined efforts, positive attitude and other qualities to lead a successful life.

Program Coordinator

BOS irman **MEAD**

Department of Mathematics Karmaveer Bhaurao Patil College Vashi, Navi Mumbai

Principal I/C PRINCIPAL KARMAVEER BHAURAO PATIL COLLEGE VASHI, NAVI MUMBAI 400 703.

Rayat Shikshan Sanstha's

Karmaveer Bhaurao Patil College Vashi, Navi Mumbai

(Autonomous)

Name of Program: Master of Science

Program Outcomes (PSO)

At the end of the three- year program, the student will understand and be able to-

PS01	Recalling the concepts of mathematics and applying them to the various courses like algebra, analysis, Differential equations, statistics, etc to form mathematical models.
PSO2	Apply Mathematics to interdisciplinary ways like statistician, mathematical finance, industry expertise and interpret quantitative ideas.
PSO3	Apply knowledge of Mathematics for research and engineering.

Coordinator

airman BC

HEAD Department of Mathematics Karmaveer Bhaurao Patil College Vashi, Navi Mumbai

Title of Specific Program: B.Sc. Mathematics			
Course Code	e	Name of the Course	Course outcomes
			After successful completion of each course in learner will be able to:
			Semester-I
PGMT101	A	LGEBRA I	CO1: Define dual space and calculate the dual basis of a finite-dimensional vector space.[1]* CO2: Explain the relation between matrices representing a linear transformation and its transpose. [2]* CO3: Explain different operators like normal, self-adjoint, and symmetric operators.[2]* CO4: Compute the Eigenvalue and Eigenvectors and minimal polynomial of a matrix.[5]*
PGMT102	A	NALYSIS I	CO1: Recall Inner product space, norm linear space and vector space.[1]* CO2: Distinguish among open and closed sets on different topologies of \mathbb{R}^n .[2]* CO3: Determine whether a function is Riemann integrable using definition and Riemann criteria. [1]* CO4: List the results on total derivative. [2]* CO5: Compare Taylor's theorem for one and more variables.[2]* CO6: Apply second derivative to find maxima and minima of a differentiable functions [3]*
GMT103	CO	OMPLEX NALYSIS	C01: Represent complex numbers algebraically and geometrically.[1]* C02: Define and analyse limits and continuity for complex functions as well as consequences of continuity.[1]* C03: Apply the Cauchy-Riemann equations and results on harmonic and entire functions including the fundamental theorem of algebra.[3]* C04: Analyse sequences and series of analytic functions and types of convergence.[4]* C05: Evaluate complex contour integrals directly and by the fundamental theorem, apply the Cauchy integral theorem in its various versions.[5]* C06: Represent functions as Taylor, power and Laurent series, classify singularities and poles, find residues and evaluate complex integrals using the residue theorem [2]*
GMT104A	DI M	ISCRETE ATHEMATICS	CO1: Solve discrete mathematics problems that involve computing permutations and combinations of a set.[5]* CO2: Explain Polya's theory of counting, Orbit stabilizer theorem, Burnside lemma and its applications, applications of Polya's formula.[1]* CO3: Apply the knowledge of Number theory to attain specific maturity [2]*

		CO4: Apply fundamental enumeration principles to solve
		appropriate problems.[3]*
	INTRODUCTION	CO1: Study of fundamentals of R.[1] ² CO2: Use different functions, variables and operators in R [3]*
PGMT105	PROGRAMMING	CO3: Write and execute programming in R by using loop and string [3]*
	-	CO4: Analysed and visualized mathematical statistical functions using R.[4]*
		Semester-II
	ALGEBRA-II	CO1: Understand the concept of group homomorphism, isomorphism and automorphism and apply it for constructing groups. [2]* CO2: Analyze Class equation, Sylow's theorems and apply
		them for describing structures of finite groups. [4]* CO3: Demonstrate the knowledge of Rings, ideals of Rings
PGMT201		and Quotient rings, Polynomial ring over field and its extension. [2]*
		CO4: Learn Fundamental theorem of algebra, Burnside theorem and Kronecker's theorem and solve the
		problems.[1]*
		CO5: Derive and apply Gauss Lemma, and Eisenstein
		CO6: Demonstrate Field extensions and characterization of finite fields.[4]*
	TOPOLOGY	CO1:Identify topologies and form a topological space using basis and sub-basis.[2]* CO2: Define connected space and find its components and path components of a topological space. [5]* CO3: Study of theorems on connectedness, compactness
PGMT202		and completeness.[2]* CO4: State the first, second countability and separable axioms. List the results based on first and second countability. [1]* CO5: Apply metric space concept to compactness and
	RESEARCH METHODOLOGY	COMpleteness. [3] ⁴ CO1: Understand fundamental concept of research and define appropriate hypothesis.[2]* CO2: Collect data and apply different methods for sampling data [2]*
PGMT203		CO3: Analyse data and form report [4]* CO4: Understand Intellectual Property Rights, patenting and copy right to develop research skill [2]* CO5: Construct project research report [6]*
PGMT204A	DIFFERENTIAL EQUATIONS	CO1: Apply Picard's method for finding solutions of first order differential equations.[3]* CO2: Expresses the existence and uniqueness results for an n^{th} order linear Ordinary Differential Equations.[2]* CO3: Apply the method of 'variation of parameters' to find solution of higher order linear differential equations with variable coefficients. [3]*

		CO4: Define Fourier series and apply for periodic functions.
		[1]* CO5: Construct Fourier analysis of daily life periodic
		functions.[6]*
	INTRODUCTION	CO-1: Create different types of data frames in R [6]*
	TOP	CO-2: Handel and analyse various files in R [4]*
PGMT205	PROGRAMMING-	CO-3: Analyse and visualize statistical functions using R.[4]*
	II	CO-4: Apply R programming to machine learning and big
		data analysis.[3]* Semester-III
		CO1: Define character of a linear representation and list the
		properties exhibited by them.[1]*
		CO2: Find the character table of groups of small order.[5]*
		CO3: Explain the structure theorem for finitely generated
		modules over a ring and its applications to
		abelian groups and matrices.[1]*
		CO4: Design, analyze and implement the concepts of
PGMT301	Algebra-III	homomorphism and isomorphism
		between modules for solving different types of problems,
		for example, isomorphism theorems,
		quotient modules etc. [4]",[5]"
		structures such as solvable groups simple
		groups and alternate groups to understand and use the
		fundamental results in algebra. [4]*
		CO1: Understand how measures may be used to construct
	ANALYSIS II	integrals.[2]*
		CO2: Establish measurability or non-measurability of sets
		and functions.[1]*
		CO3: Compute Lebesgue integral and have knowledge of its
PGMT302		applications to volume calculations and Fourier
		analysis.[4] [*]
		cortain problems for which Riemann integration
		does not provide adequate answers [2]*
		CO5: Know the basic convergence theorems for the
		Lebesgue integral.[2]*
		CO1: Understand and solve problems which require the use
	DIFFERENTIAL GEOMETRY	of differential geometry [2]*
		CO2: Recognize the basis of notions of the local theory of
		space curves and the local theory of surfaces.[1]*
		CO3: Compute the curvature and torsion of space
PGMT303		curves.[6]*
		curve how to compute them and how they suffice to
		determine the shape of the curve [2]* [6]*
		CO5: Analyse and solve complex problems using
		appropriate techniques from differential geometry.[4]*.[5]*
		CO-1: understand the concepts of Numerical Differentiation
PGMT 304 A	NUMERICAL	and Integration [2]*
	METHODS	CO-2: perform calculations to solve problems. [5]*

•

٠

		CO-3: Solve differential equations & Boundary value
		problems for ODE and PDE using various methods [5]*
		CO-4: Design, analyze and implement of numerical methods
		for solving different types of problems. [4]*
		CO-5: select numerical methods with the understanding of
		their limitations so that they can be
		implemented in order to get acceptable results. [2]*
		CO-6: Develop programming using python for various
		numerical methods. [1]*
		CO1: Define integral transforms and Z-Transform [1]*
		CO2: State properties of Laplace, Fourier, Mellin and Z-
		Transform [1]*
CEC	INTECDAL	CO3: Apply Fourier transforms to find the solution of initial
SEC .	INTEGRAL	and boundary value problems. [3]*
PGM1305A	IKANSFUKMS	CO4: Find solutions of difference equations using Z-
		transform [5]*
		CO5: Apply Laplace transform to find solutions of
		differential equation [3]*
		Semester-IV
		CO1: Understand the notion of extension of field.[2]*
		CO2: Define straightedge and compass construction and
		explain few results. [1]*
		CO3: Define radical extension and give examples of a radical
	7	extension. [1]*
PGMT401	FIELD THEORY	CO4: Identify and analyze different types of algebraic
		structures such as Algebraically closed fields,
		Splitting fields, Finite field extensions.[4]*
		CO5: Create and apply appropriate algebraic structures
		such as Galois extensions,
		Automorphisms of groups and fixed fields. [3]*
		CO1: Explain the fundamental concepts of Functional
	FUNCTIONAL ANALYSIS	analysis and their role in modern mathematics.[1]*
		CO2: Understand and apply ideas from the theory of Hilbert
		spaces to other areas. $[2]^*$
		CO3: Utilize the concepts of functional analysis, for example,
		continuous and bounded operators, normed spaces,
PGMT402		and mindert spaces. [1]
		equivalent characterizations [1]*
		CO5: Understand and apply fundamental theorems from the
		theory of normed and Banach spaces including
		the Hahn-Banach theorem, the open mapping theorem, the
		closed graph theorem, and the uniform
		boundedness theorem. [2]*
		CO-1: Solve the First order quasi-linear PDE by Cauchy's
	PARTIAL DIFFERENTIAL EQUATION	method [5]*
		CO-2: Solve linear and non-linear partial differential
PGMT403		equation of first order by using Lagrange's and
		Charpit's method.[5]*
		CO-3: Classify second order PDE and solve standard PDE
		using separation of variable method.[2]*

•

Ŷ

		CO-4: Explain the properties of the Gaussian kernel.[2]* CO-5: Find the solution of the initial value problems of wave and heat equation. [5]*
PGMT404A	FOURIER ANALYSIS	CO1: Define Fourier series and find Fourier coefficient [1]* CO2: Solve problems on different periods 2π , L 1and L2-periodic functions [5]* CO3: Find Fejer's Kernel and apply Fejer's Theorem [3]* CO4: Apply Fourier series to partial differential equation [3]*

Note: Numbers in bracket[] indicates cognitive levels of revised Blooms Taxonomy as follows: [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analysing, [5]: Evaluating, [6]: Creating

ade Coordinator

BOS hairman

HEAD Department of Mathematics Karmaveer Bhaurao Patil College Vashi, Navi Mumbai.

KARMAVEER BHAURAO PATIL COLLEGE VASHI, NAVI MUMBAI 400 703