Rayat Shikshan Sanstha's KARMAVEER BHAURAO PATIL COLLEGE, VASHI, NAVI MUMBAI [AUTONOMOUS COLLEGE]

DEPARTMENT OF PHYSICS M.Sc. Physics Curriculum

Program Outcomes (POs):

PO-1	Disciplinary Knowledge and Skills: Acquire the comprehensive and in-depth knowledge of various subjects in sciences such as Physics, Chemistry, Mathematics, Microbiology, Bio-analytical Science, Computer Science, Data Science, Information Technology and disciplinary skills and ability to apply these skills in the field of science, technology and its allied branches.
PO-2	Communication and Presentation Skills: Develop various communication skills including presentation to express ideas evidently to achieve common goals of the organization.
PO-3	Creativity and Critical Judgement: Facilitate solutions to current issues based on investigations, evaluation and justification using evidence based approach.
PO-4	Analytical Reasoning and Problem Solving: Build critical and analytical attitude in handling the problems and situations.
PO-5	Sense of Inquiry: Curiously raise relevant questions based on highly developed ideas, scientific theories and its applications including research.
PO-6	Use of Digital Technologies: Use various digital technologies to explore information/data for business, scientific research and related purposes.
PO-7	Research Skills: Construct, collect, investigates, evaluate and interpret information/data relevant to science and technology to adapt, evolve and shape the future.
PO-8	Application of Knowledge: Develop scientific outlook to create consciousness against the social myths and blind faith.

PO-9	Moral and Ethical Reasoning: Imbibe ethical, moral and social values to develop virtues such as justice, generosity and charity as beneficial to individuals and society at large.
PO-10	Leadership and Teamwork: Work cooperatively and lead proactively to achieve the goals of the organization by implementing the plans and projects in various field-based situations related to science, technology and society at large.
PO-11	Environment and Sustainability: Create social awareness about environment and develop sustainability for betterment of future.
PO-12	Lifelong Learning: Realize that pursuit of knowledge is a lifelong activity and in combination with determined efforts, positive attitude and other qualities to lead a successful life.

Program Coordinator

Chairman, BOS

T/C PRINCIPAL

KARMANEGRAPAN RAO PATIL COLLEGE

VASHI, NAVI MUMBAI 400 703.

Program Specific Outcomes (PSOs): PHYSICS

PSO-1	Problem Analysis – Ability to identify and analyze the Physics problems using the basic principles and computational tools.
PSO-2	Acquired skills – Potential to adopt, absorb and develop innovative ideas in the physics and interdisciplinary areas.
PSO-3	Competent to engage themselves in lifelong learning, develop professional ethics and build a team by using their knowledge to serve the society at large with effective communication.

Program Coordinator

Chairman, BOS

I/C PRINCIPAL
KARMAVEER BHALIRAO PATIL COLLEGE
VASHI, NAVI MUMBAI 400 703.

COURSE OUTCOMES (COs):

Course Code	Course Outcomes: Students should be able to
PGPH101	CO - 1: analyse and Solve numerical on Complex Variables, Limits, Continuity,
Mathematical	Derivatives, Cauchy-Riemann
Methods	Equations, Analytic functions, Harmonic functions, Taylor and Laurent
	series, Residues and Residue theorem
	[3,4]
	CO - 2: understand and calculate matrix Algebra, Eigenvalue and Eigenvector
	problems, different ways of solving second
	order differential equations, Green function [2,4].
	CO - 3: solve the problems based on special functions like Hermite, Bessel,
	Laguerre and Legendre functions [3].
	CO - 4: apply and Solve the Fourier transform and Laplace transform theorems
	and problems [4].
	and problems [4].
PGPH102	CO - 1: understand the fundamental concepts of planetary motion in a central
Classical	force field and its applications [2].
Mechanics	CO - 2: understand the dynamic motion of classical mechanical system using
	Lagrangian, and Hamiltonian Formalism[2].
	CO - 3: apply the classical background of mechanics to Canonical
	Transformations & Hamilton-Jacobi theory [3].
	CO - 4: execute the Classical approach to Special theory of relativity, various
	transformations and Lagrangian and
	Hamiltonian of a relativistic particle[4].
PGPH103	CO - 1: interpret the physical significance of wave function and apply
	mathematical tools & operators to obtain
Quantum	information about states of the system and corresponding dynamical
Mechanics	variables [2,3].
	CO - 2: analyze one dimensional potential problem and utilize the concepts and
	mathematical formulation of angular
	momentum and Pauli spin matrices to various physical systems [4].
	CO - 3: identify and apply suitable approximation methods among variational
	method, WKB, perturbation theory and
	adiabatic approximation to various potential problems and calculate the
	corresponding ground state energies [1].
	CO - 4: understand the basics of scattering processes invoked due to central
	potential problems and analyze the
	corresponding phase shifts [2,4].
PGPH104	CO - 1: describe the microprocessor's counter, stack and subroutine
Advance	Microcontroller 8051's Architecture and Registers,
Electronics	operational amplifier and its application, Types of modulation, Modems
	optical fiber's numerical angle, acceptance

	angle, attenuation and dispersion [2].
	CO - 2: compare the microcontrollers and microprocessors memory devices,
	bitwise Microcontrollers, Processors,
	architectures, principle of voltage and current driven inversion, types of
	power supply, switching voltage
	regulators, analog and digital transmissions [2].
	CO - 3: apply the instruction set of 8051 microcontroller for writing an assembly
	language program, instrumentation
	amplifier for various applications like IC precision rectifier, active filter,
	converters, oscillator etc. [3]
	CO - 4: explain the operation and working of time division multiplexing, fiber
	optic communication system, analog
	multiplexer, sine wave inverter and square wave inverter [3]
	CO - 5: create the assembly language program on microprocessor and
	microcontroller 8051 for the application of
	peripheral devices like DC motor, temperature controller, Single Pan
	balance IR remote control etc [6].
PGPH105	CO - 1: derive Bragg's condition for direct and reciprocal lattices, evaluate
Solid State	scattered wave amplitude, and illustrate
Physics	different X-ray diffraction methods [3, 5].
	CO - 2: compare and contrast between photons and phonons, analyse
	quantization of lattice vibrations, and derive
	Dulong and Petit's law [4,5].
	CO - 3: differentiate between types of polarization and deduce theories of
	diamagnetism and ferromagnetism [4,5].
	CO - 4: calculate effect of temperature external magnetic field on
	superconductors, differentiate between types of
	superconductors, explain the theories related to superconductors [4].
PGPH106	CO - 1: understand the carrier injection by light and its transport phenomena in
Physics of Solar	semiconductors [2, 5].
Cells	CO - 2: record I-V characteristics and Calculate conversion efficiency of solar
	cells [5, 6].
	CO - 3: determine series resistance, shunt resistance, dark and illuminated
	characteristics of solar cells,
	ideal properties of photovoltaic solar cells [5].
	CO - 4: use binary, ternary, tertiary semiconductor compounds for photovoltaic
	solar cells [3]
PGPH201	CO - 1: describe the Maxwell equations in analyzing the nature of
Electrodynamics	electromagnetic field due to time
	varying charge and current distribution [1].
	CO - 2: understand the nature of electromagnetic waves and its propagation
	through different media [2].

	CO - 3: understand the covariant formulation of Electrodynamics with the
	concept of retarded time and
	analyze the radiation systems dipole [4].
	CO - 4: apply the dynamics of charged particles radiation to localized time
	varying electro-magnetic sources [3].
	CO - 5: analyse the idea of electromagnetic wave propagation through space and
	wave guides [4].
PGPH202	CO - 1: understand and think critically Basic concepts, Statistical
	Equilibrium and thermodynamic Laws and Functions [2]
Statistical	CO - 2: describe and solve numerical Statistical Ensembles Theory [3].
Mechanics	CO - 3: understand and apply Quantum distribution functions [3].
	CO - 4: understand Phase Transitions and Critical Phenomenon [2].
	CO - 5: Describe Entropy and specific heat of a perfect gas, Entropy and
	probability distribution [2]
PGPH203	CO - 1: understand the fundamental concept of research and define appropriate
Research	hypothesis.
Methodology	CO - 2: collect data and apply different methods for sampling data
Methodology	co - 3: analyze data and form report
	CO - 4: understand Intellectual Property Rights, patenting and copy right to
	develop research skill
	CO - 5: construct project research report
	(Data interpretation and sample handling)
PGPH204	CO-1: Analyze the data analysis (Data interpretation and sample handling) obtained from the techniques using various distributions, process of
Experimental	measurements, and errors [4].
Physics	CO-2: Analyse the behavior of the thin films by different characterization
	techniques [4]
	co-3: Understand the concepts of different spectroscopic techniques for
	Physical and Chemical analysis of the prepared samples [2].
	co-4: Analyze samples by Electron microscopy and understand the recent
	advancement in microscopic techniques[4].

PGPH205	CO - 1: state the fundamental properties of semiconductors and types of
Solid State	semiconductors and distinguish between metals,
Devices	semiconductors and insulators on the basis of band theory [1].
501.005	CO - 2: explain how p-n junction diode is formed and its operations under
	forward and reverse biased conditions and
	understand the depletion region, depletion capacitance, and its C-V
	characteristics [2].
9	CO - 3: differentiate Schottky diode and p-n junction diode [4].
	CO - 4: understand construction and working of Metal-semiconductor field effect
	transistor (MESFET)
	device structure, principles of operation, Current voltage (I-V)
	characteristics, High frequency
	performance. Modulation doped field effect transistor (MODFET) [2].
	performance. Woudination doped field effect transistor (WODI E1) [2].
PGPH206	CO - 1: understand the fundamentals of nano-science and nanotechnology [2].
Nano-science	CO - 2: describe various synthesis methods for nanostructure materials [2].
and	CO - 3: analyse the special Nanomaterials based on the Carbon nanotubes
Nanotechnology	(CNTs) and graphene[4].
	CO - 4: analyze quantum confinement based nanostructured transistors [4].
PGPH301	CO - 1: derive Bragg's condition for direct and reciprocal lattices, evaluate
Solid State	scattered wave amplitude, and illustrate
Physics	different X-ray diffraction methods [3,5].
	CO - 2: compare and contrast between photons and phonons, analyse quantization
	of lattice vibrations, and derive
	Dulong and Petit's law [4,5].
	CO - 3: differentiate between types of polarization and deduce theories of
	diamagnetism and ferromagnetism [4,5].
	CO - 4: calculate effect of temperature external magnetic field on
	superconductors, differentiate between types of
	superconductors, explain the theories related to superconductors [4].
PGPH302	CO - 1: remember the one and two electron atoms using the Schrödinger equation
	and Analyze the
Atomic and	properties of vector atom model [1].
Molecular	CO - 2: understand atomic spectra with different coupling interactions under
Physics	electric and magnetic fields [2].
,	CO - 3: analyze the classical/quantum description of electronic spectra of atoms
	and molecules [4].
	CO - 4: understand the various Atomic spectra with electromagnetic radiation and
	their interactions [2].
	CO - 5: understand and apply the various Molecular spectra and Describe
	different resonance spectroscopic
	techniques and its applications [3].

	C. A. L. A. Lifferent types of atomic and
PGPHEC01	CO - 1: Analyze different types of materials and different types of atomic and
5 1	molecular bonding [4].
Fundamentals of Materials and	CO - 2: understand the plastic deformation of metal single crystals -
Recent trends	polycrystalline metals and its recovery and
Recent trends	recrystallization [2].
	CO - 3: draw phase diagram of pure substances, compounds with Intermediate
	Phases and ternary compounds [6].
	CO - 4: explore recent trends in material science like nano materials, smart
	materials, novel materials and modern
	semiconducting materials [1].
PGPH304	CO - 1: analyze the factors affecting on mechanical properties of materials [4].
	CO - 2: understand different kinds of dielectric polarization [2].
Properties of	CO - 3: classify dia, para, ferro, antiferro and ferrimagnetism [2].
Materials	CO - 4: study optical absorption in semiconductors, metals and insulators [1].
	CO - 5: explore applications of optical materials like LED, LCD, solar cells etc
	[2].
PGPH401	CO - 1: state the fundamental properties of semiconductors and types of
1 01 11 101	semiconductors and distinguish between metals,
Solid State	semiconductors and insulators on the basis of band theory[1,2].
Devices	CO - 2: explain how p-n junction diode is formed and its operations under
Devices	forward and reverse biased conditions and
	understand the depletion region, depletion capacitance, and its C-V
	characteristic[2].
	CO - 3: differentiate Schottky diode and p-n junction diode[2].
	CO - 4: understand construction and working of Metal-semiconductor field effect
	transistor (MESFET) - device structure,
	principles of operation, Current voltage (I-V) characteristics, High
	frequency performance. Modulation doped
	field effect transistor (MODFET)[1].
DCDII 403	CO - 1: understand and explain the general properties of nuclei, nuclear structure
PGPH402	and nuclear models [2].
Nuclear Physics	CO - 2: illustrate the structure of nuclei through different nuclear models [1].
	CO - 3: understand nucleon-nucleon scattering, types of decays and deuteron
	problem to explain nature of nuclear forces
	[2]. CO - 4: Analyse elementary nuclear particles, and their families, symmetries and
	conservation laws [4]. CO - 5: compare and contrast between Nuclear Detectors & Accelerators and their
D G D T T 105	applications in various fields [3].
PGPH403	CO - 1: analyse different material processes like casting, forging, spinning,
	extrusion, rolling etc. [4].
Material	and a little and the forest most processes such as locar cladding
Material Processing	CO - 2: understand different surface treatment processes such as laser cladding. nitriding, shock

	hardening, carburization [2]. CO - 3: evaluate the effect of tempering temperature on mechanical properties [5]. CO - 4: differentiate between normalized and annealed components [5]. CO - 5: study various steps in manufacturing components by powder metallurgy process. [2].
PGPHEC02	CO - 6: understand different finishing processes [2]. CO - 1: understand simple, cost effective chemical methods of thin film
Thin Film Physics and Devices	deposition [2]. CO - 2: distinguish different physical methods of thin film deposition [4]. CO - 3: describe in detail atomistic model of nucleation [2]. CO - 4: evaluate dielectric and optical properties of thin films [5]
	CO - 5: illustrate different applications of thin films like sensors, solar cells, super capacitors, mirrors, detectors etc. [3]

Program Coordinator

Chairman, BOS

I/C PRINCIPAL

KARMAVEERIBHINLERA SIPATIL COLLEGE
VASHI, NAVI MUMBAI 400 703.

