

AC-14/02/2022

Item No: 6.4

Rayat Shikshan Sanstha's KARMAVEER BHAURAO PATIL COLLEGE, VASHI NAVI MUMBAI

Sector-15- A, Vashi, Navi Mumbai - 400 703 (AUTONOMOUS COLLEGE)

Program: B.Sc. Microbiology

Syllabus for S.Y.B.Sc. Microbiology

(Choice Based Credit System with effect from the academic year 2022-2023)

Rayat Shikshan Sanstha's

Karmaveer Bhaurao Patil College Vashi, Navi Mumbai

Autonomous College

[Affiliated to University of Mumbai]

Syllabus

Sr. No.	Heading	Particulars
1	Title of Course	S.Y.B.Sc. Microbiology (CBCS)
2	Eligibility for Admission	F.Y.B.Sc. (Microbiology), From a recognized university
3	Passing Marks	40%
4	Ordinances/Regulations (if any)	
5	No. of Years/Semesters	One year/Two semester
6	Level	U.G.
7	Pattern	Semester
8	Status	New
9	To be implemented from Academic year	2022-2023

Preamble of the Syllabus:

Bachelor of Science (B.Sc.) in Microbiology is an undergraduate program of Department of Microbiology, Karmaveer Bhaurao Patil College Vashi, Navi Mumbai [Autonomous College].

Microbiology is a branch of science that studies microorganisms such as bacteria, protozoa, algae, fungi, bacteria, viruses, etc. These studies integrate cytology, physiology, ecology, genetics and molecular biology, evolution, taxonomy and systematics with a focus on microorganisms.

The relevance and applications of microorganisms to the surrounding environment including human life and Mother Nature becomes part of this branch. Since inception of this branch of science, Microbiology has remained a field of active research and ever expanding in all possible directions; broadly categorized as pure and applied science.

Different branches of Pure Microbiology based on taxonomy are Bacteriology, Mycology, Protozoology and Parasitology, Phycology and Virology; with considerable overlap between these specific branches over each other and also with other disciplines of life sciences, like Biochemistry, Botany, Zoology, Cell Biology, Biotechnology, Nanotechnology, Bioinformatics, etc.

Areas in the applied Microbial Sciences can be identified as: Medical, Pharmaceutical, Industrial (Fermentation, Pollution Control), Air, Water, Food and Dairy, Agriculture (Plant Pathology and Soil Microbiology), Veterinary, Environmental (Ecology, Geomicrobiology); and the technological aspects of these areas.

Microbiological tools have been extensively used to study different life processes and are cutting edge technologies. There is a continual demand for microbiologists in the work force education, industry and research. Career opportunities for the graduate students are available in manufacturing industry and research institutes at technical level.

The content of a syllabus should be such that it maintains continuity with the course content of higher secondary class and post graduate course. The present curriculum is made keeping this in mind and is an effort to impart fundamental knowledge of the subject needed at this level. The curriculum is designed as per the guidelines for Choice Based Credit System and reflects the total credit, teaching hours and evaluation pattern.

Rayat Shikshan Sanstha's KARMAVEER BHAURAO PATIL COLLEGE, VASHI, NAVI MUMBAI (Autonomous) Department of Microbiology S.Y.B. Sc. Microbiology

Program Outcomes (POs)

Learners are able to:

P0-1	Disciplinary	Acquire the comprehensive and in-depth knowledge of various
10-1	Knowledge and	subjects in sciences such as Physics, Chemistry, Mathematics,
	•	
	Skills	Microbiology, Bio- analytical Science, Computer Science, Data Science,
		Information Technology and disciplinary skills and ability to apply
		these skills in the field of science, technology and its allied branches.
PO-2	Communication	Develop various communication skills including presentation to
	and Presentation	express ideas evidently to achieve common goals of the organization.
	Skills	
PO-3	Creativity and	Facilitate solutions to current issues based on investigations,
	Critical	evaluation and justification using evidence-based approach.
	Judgment	
PO-4	Analytical	Build critical and analytical attitude in handling the problems and
	Reasoning and	situations.
	Problem Solving	
PO-5	Sense of Inquiry	Curiously raise relevant questions based on highly developed ideas,
		scientific theories and its applications including research.
PO-6	Use of Modern	Use various digital technologies to explore information/data for
	Tools	business, scientific research and related purposes.
P0-7	Research Skills	Construct, collect, investigates, evaluate and interpret
		information/data relevant to science and technology to adapt, evolve
		and shape the future.
PO-8	Application of	Develop scientific outlook to create consciousness against the social
	Knowledge	myths and blind faith.
P0-9	Moral and	Imbibe ethical, moral and social values to develop virtues such as
	Ethical Reasoning	justice, generosity and charity as beneficial to individuals and society
		at large.
PO-10	Leadership and	Work cooperatively and lead proactively to achieve the goals of
	Teamwork	the organization by implementing the plans and projects in various
		field-based situations related to science, technology and society at
		large.

P0-11	Environment and Sustainability	Create social awareness about environment and develop sustainability for betterment of future.
PO-12	Lifelong Learning	Realize that pursuit of knowledge is a lifelong activity and in combination with determined efforts, positive attitude and other qualities to lead a successful life.

	Program Specific Outcomes (PSO)
PSO1	Understand the various aspects of microbial world and history of microbiology
PSO2	Differentiate and classify different types of microorganism and its characteristics
PSO3	Distinguish between Prokaryotes and Eukaryotes with respective to their ultra-structure and functions.
PSO4	Understand & differentiate the requirement of nutrients and environmental conditions for the growth of microorganisms
	Apply the knowledge of basic instrumentation, basic techniques in microbiology and control of microorganism
	Explain and describe types and functions of different biomolecules found in living cells
PSO7	Describe the aspects of microbial ecology and industrial microbiology
PSO8	Illustrate the basic immunology and medical microbiology

S. Y. B. Sc. Microbiology Syllabus (Semester III & IV) Choice Based Credit System

SEMESTER III

S. Y. B. Sc. Microbiology (Theory)

	SEMESTER-III									
Pape	Paper Code	Title	Credits	Lectures						
r No				/ Week						
Ι	UGMB301.2	Biochemistry and Genetics	3	3						
II	UGMB302.2	Introduction to Medical Microbiology and Immunology	3	3						
III	UGMB303.2	Environmental Microbiology	3	3						
IV	UGMBSEC 301.2A	Analysis of Air, Water & Soil	3	3						
V	UGMBSEC 301.2B	Biofertilizers & Biopesticides	3	3						
		SEMESTER-IV								
Ι	UGMB401.2	Biochemistry and Basic Analytical Techniques	3	3						
II	UGMB402.2	Introduction to Microbial Taxonomy And Diversity	3	3						
III	UGMB403.2	Applied Microbiology	3	3						
IV	UGMBSEC- 401.2A	Food, Dairy & Bioprocess Technology	3	3						
V	UGMBSEC- 401.2B	Diagnostic Microbiology	3	3						

S. Y. B. Sc. Microbiology (Laboratory Sessions)

		SEMESTER-III		
Paper No	Paper Code	Title	Credits	Lectures / Week
Ι	UGMBP03.2	Biochemistry and Genetics	3	6
		Introduction to Medical Microbiology and Immunology		
		Environmental Microbiology		
II	UGMBSECP30 1.2A	Food, Dairy & Bioprocess Technology	1	2
III	UGMBSECP30 1.2B	Diagnostic Microbiology	1	2
		SEMESTER-IV		
Ι	UGMBP04.2	Biochemistry and Basic Analytical Techniques Introduction to Microbial Taxonomy And Diversity Applied Microbiology	3	6
II	UGMBSECP 401.2A	Food, Dairy & Bioprocess Technology	1	2
III	UGMBSECP 401.2B	Diagnostic Microbiology	1	2

	Teac	hin	g - E	val	luat	ion	Sc	her	ne					
			Sen	nest	er-II	I								
Course Code	TeachingExamination SchemeCourse NameSchemeand Marks(Hours/Week)									Credit Scheme				
		Lecture	Practical	Tutorial	CIE	Sem End-	Term	Practical	Oral	Total	Lecture	Practical	Tutorial	Total
UGMB301.2	Biochemistry and Genetics	03	-	-	40	60	-		-	100	03	-	-	03
UGMB302.2	Introduction to Medical Microbiology and Immunology	03	-	-	40	60	-		-	100	03	-	-	03
UGMB303.2	Environmental Microbiology	03	-	-	40	60	-		-	100	03	-	-	03
UGMBSEC 301.2A Or UGMBSEC 301.2B	Analysis of Air, Water & Soil Or Biofertilizers & Biopesticides	03	-	-	40	60	-	-	_	100	03	-	-	03
UGMBP03.2	Laboratory Sessions for UGMB301.2, UGMB302.2 & UGMB303.2	-	06	-	-	-		150	-	150	-	03	-	03
UGMBSECP 301.2A Or UGMBSECP 301.2B	Analysis of Air, Water & Soil Or Biofertilizers & Biopesticides	-	02	-			-	50	-	50	-	01	-	01
	Total	12		-	160	240	-	200	-	600		04	-	16
	То	otal (Credit								12	04	-	16

	Teaching - Evaluation Scheme													
			Sen	iest	er-I	V								
Course Code	Course Name	Scł	eaching Examination Scheme cheme and Marks								Credit Scheme			
		Lecture	Practical	Tutorial	CIE	Sem End-	Term	Practical	Oral	Total	Lecture	Practical	Tutorial	Total
UGMB401.2	Biochemistry and Basic Analytical Techniques	03	-	-	40	60	-		_	100	03	-	-	03
UGMB402.2	Introduction to Microbial Taxonomy And Diversity	03	-	-	40	60	-		-	100	03	-	-	03
UGMB403.2	Applied Microbiology	03	-	-	40	60	-		-	100	03	-	-	03
UGMBSEC 401.2A Or UGMBSEC 401.2B	Food, Dairy & Bioprocess Technology Or Diagnostic Microbiology	03	-	-	40	60	-	-	-	100	03	-	-	03
UGMBP04.2	Laboratory Sessions for UGMB401.2, UGMB402.2 & UGMB403.2	-	06	-	-	-		150	-	150	-	03	-	03
UGMBSECP 401.2A Or UGMBSECP 401.2B	Food, Dairy & Bioprocess Technology Or Diagnostic Microbiology	-	02	-			-	50	-	50	-	01	-	01
	Total	12	08	-	160	240	-	200	-	600	12	04	-	16
	То	tal (credit		<u>.</u>					<u>.</u>	12	04		16

COURSE STRUCTURE FOR S.Y.B.Sc. MICROBIOLOGY

SEMESTER III

	Course Unit Topic		Credit	L/W			
			Biochemistry and Genetics				
CORE COURSE		Ι	Introduction to Metabolism & Bioenergetics	3	3		
	UGMB 301.2	UGMB II Metabolism of Biomolecules					
	501.2	III	III Basic of Genetics				
	Introc	luction	n to Medical Microbiology and Immunol	ogy			
CORE COURSE	UGMB	Ι	Epidemiology and Public Health Awareness				
	302.2	II	Common Infectious Diseases	3	3		
		III	Innate Immunity & Immune System				
			Environmental Microbiology				
	HOND	Ι	Air Microbiology				
CORE COURSE	UGMB 303.2	3	3				
	505.2	III	Soil & Geo-microbiology	5	5		
SKILL			Analysis of Air, Water, Soil				
ENHANCEMENT		I Analysis of Air					
COURSE	UGMBSEC				3		
(SEC-A)	301.2A	II	Analysis of Water				
		III	Analysis of Soil				
SKILL			Biofertilizers & Biopesticides				
ENHANCEMENT		Ι	Biofertilizer				
COURSE	UGMBSEC		N	3	3		
(SEC-B)	301.2B	II	Biopesticides				
		III Production & Application of biofertilizers, biopesticides					
Session	UGMBP03.2	Ι	Practicum of Core Course 1, 2 & 3	3	6		
Core Courses	UGMBSECP	IV	Practicum of Skill Enhancement Course 1	1	2		
	301.2A	IV	or		2		
SEC	UGMBSECP 301.2A	V	Practicum of Skill Enhancement Course 2	1	2		

COURSE STUCTURE FOR S.Y.B.Sc. MICROBIOLOGY

SEMESTER IV

	Course	Unit	Торіс	Credit	L/W
		Bioch	emistry and Basic Analytical Technique	S	
		Ι	Microbial Biochemistry		
CORE COURSE	UGMB401.2	II Enzyme Kinetics		3	3
CORECOURSE		III	Analytical Techniques		
	Ir	ıtrodu	ction to Microbial Taxonomy and Divers	sity	
CORE COURSE	UGMB402.2	Ι	Microbial Taxonomy		
CORE COURSE		II	Prokaryotic Diversity	3	3
		III	Eukaryotic Diversity		
			Applied Microbiology	11	
		Ι	Dairy Microbiology	3	3
CORE COURSE	UGMB 403.2	II	Food Microbiology		5
		III	Bioprocess Technology		
SKILL		Fo	od, Dairy & Bioprocess Technology		
ENHANCEMENT		Ι	Prebiotic & Probiotic		
COURSE	UGMBSEC	II	3	3	
(SEC-A)	401.2A	III	Packaging		
SKILL			Diagnostic Microbiology		
ENHANCEMENT		Ι	Typical Diagnostic Cycle		
COURSE	UGMBSEC	II	Diagnostic & Clinical Microbiology	3	3
(SEC-B)	401.2B		Clinical Laboratory Management & Quality Control		
Laboratory Session	UGMBP04.2	Ι	Practicum of Core Course 1, 2 & 3	3	6
Laboratory	UGMBSECP	IV	Practicum of Skill Enhancement Course 1	se 1 1 2	
Session	301.2A		or		
SEC	UGMBSECP 301.2A	V	Practicum of Skill Enhancement Course 2	1	2

Teaching Pattern for Semester I and II:

- 1. Three lectures per week per course. Each lecture is of 60 minutes duration and practical sessions for 06 Hrs.
- 2. For SEC three lectures per week per course, each lecture is of 60 minutes duration.

Objective:

- 1. To introduce the application-based research in Microbiology
- 2. To inculcate sense of scientific responsibilities and social and environment awareness
- 3. To enrich students' knowledge and train them in the applied microbial sciences
- 4. To help student's build-up a progressive and successful career

SEMESTER I Core Course UGMB301.2 Biochemistry and Genetics

Course Learning Outcome: By the end of the course, students will be able to -

CO1: Understand basics of carbohydrates and its metabolism [2]*

CO2: Obtain knowledge on structure and different classes of amino acids and proteins [1]* CO3: Obtain in-depth information on protein catabolism and qualitative & quantitative analysis of proteins and lipids [4]*

CO4: Apply & evaluate the knowledge on Mendelian Genetics and chromosomal organization [5]* CO5: Gain the knowledge and apply on Genetic code and Central dogma of life. [3]*

*Note: According to Bloom's Taxonomy- [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analyzing, [5]: Evaluating, [6]: Creating

												
ICT Tool	CT Tools: Videos, PPT, Smart Board,											
Students	Students Centric Methods: Experimental, Participative, Problem Solving											
					CO-PO N	Aatrix I	Mappin	g				
	PO-1	PO-2	PO-3	P0-4	PO-5	P0-6	PO-7	PO-8	P0-9	PO-10	PO-11	PO-12
C01	1	0	0	0	2	0	0	3	0	0	0	0
CO2	1	0	0	0	2	0	0	3	0	0	0	0
CO3	0	0	1	0	0	2	0	0	0	0	0	3
CO4	0	0	3	2	0	0	0	1	0	0	0	0
C05	1	0	0	2	0	0	0	0	0	0	0	3

***In CO-PO Mapping Matrix:** a correlation is established between COs and POs in the scale of 1 to 3, 1 being the slight (low), 2 being moderate (medium), 3 being substantial (high), and '-' indicate there is no correlation in respective CO and PO.

Course Code	Title	Credits /Lecture						
UGMB301.2	MB301.2 Biochemistry and Genetics							
UNIT I	Introduction to Metabolism & Bioenergetics 1.1 Introduction to metabolism, Metabolic pathways 1.2 Organic reaction mechanism 1.3 Experimental approaches to study metabolism 1.4 Thermodynamics of Phosphate compounds 1.5 Oxidation-reduction reactions 1.6 Thermodynamics of life	1 Credit 15 Lectures						
Unit-II	Metabolism of Biomolecules- 2.1 Carbohydrate metabolism (With structures) Glycolysis (EMP) HMP Pathway TCA cycle 2.2 Amino Acids Structure and Classification 2.3 Protein- · Classification, · Biological role of proteins and structural organization of protein. · Catabolism of Proteins & Amino acids: Transamination, deamination, decarboxylation and urea cycle.	1 Credit 15 Lectures						
Unit-III	Unit-III: Basic of Genetics 3.1 Mendelian genetics 3.2 Chromosomal organization in eukaryotic and prokaryotic organisms. 3.3 Genetic code and process. 3.4 Central dogma of life. 3.5 Gene function	1 Credit 15 Lectures						

Reference Books:

- 1. Principles of Biochemistry- G. Zubay, W.W. Parson, D.E. Vance. Wm. C. Brown Publishers
- 2. Fundamentals of Biochemistry. D. Voet and J. Voet Publisher Wiley plus Edition 5th.
- 3. Lehninger- Principles of Biochemistry- David Nelson, Michael Cox. 4th edition W.H. Freeman & Company
- 4. Instrumental Methods of chemical analysis, V.K. Ahluwalia, Ane Books Pvt.Ltd; 2015.
- 5. Principles & techniques of Biochemistry & Mol biology 6th edition, Keith Wilson & John Walker, Cambridge University press, 2006
- 6. Laboratory manual in Biochemistry- J. Jayaraman

Core Course

UGMBP302.2: Introduction to Medical Microbiology and Immunology

Course Learning Outcome: By the end of the course, students will be able to -

CO1. Understand different epidemiological aspects and their importance. [2]*
CO2. Apply the knowledge of Public Health Measures to the Control of Disease [3]*
CO3. Identify and describe common infections of the Digestive and Nervous system [3]*
CO4.Demonstrate innate immunity and the different component associated with it [3]*
CO5. Select an appropriate methods & technique to identify microorganisms [4]*
CO6.Differentiate between different nosocomial infections. [2]*

*Note: According to Bloom's Taxonomy- [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analyzing, [5]: Evaluating, [6]: Creating

ICT To	CT Tools: Videos, PPT, Smart Board											
Studer	tudents Centric Methods: Experimental, Participative, Problem Solving											
	CO-PO Mapping Matrix											
	P0-1	P0-2	PO-3	P0-4	PO-5	P0-6	P0-7	P0-8	P0-9	PO-10	P0-11	PO-12
C01	1	1	2	3	0	0	0	2	0	0	3	3
CO2	1	0	2	3	0	0	3	2	0	2	0	1
CO3	1	0	0	3	0	3	2	0	0	0	0	1
CO4	1	0	0	1	2	0	0	2	0	0	0	1
CO5	0	0	0	3	0	3	2	2	0	0	0	1
CO6	1	0	0	0	0	0	0	0	0	0	0	1

***In CO-PO Mapping Matrix:** a correlation is established between COs and POs in the scale of 1 to 3, 1 being the slight (low), 2 being moderate (medium), 3 being substantial (high), and '-' indicate there is no correlation in respective CO and PO.

Course Code	Title	Credits/ Lectures	
UGMB 302.2	Introduction to Medical Microbiology and Immunology	03 Credits 45 Lectures	
UNIT I	Epidemiology and Public Health Awareness Terminology: 1.1Epidemiology, sporadic disease, Endemic disease, Hyper endemic disease, Epidemic disease, Pandemic disease & Index case. 1.2Reservoirs of infection – Human reservoirs, Animal reservoirs, Non-living reservoirs 1.3Transmission of diseases Contact, Vehicle, Vectors Transmission 1.4Public Health Measures for the Control of Disease: (With special reference to SARS Cov-2) 1.5 Controls directed against the Reservoir & Transmission of the Pathogen Immunization, Quarantine, Surveillance, Pathogen Eradication	1 Credit 15Lecturs	
Unit-II	 Common Infectious Diseases 2.1 Infections of the Digestive system: Study of structure and functions of the digestive system Study of digestive system infections caused by Salmonella species, and E. coli 2.2 Infections of the Nervous system: Structure and functions of Nervous System, Study of disease of Nervous System: Tetanus and Rabies 2.3 Introduction to Nosocomial infections 	1 Credit 15 Lectures	

Unit-III	Innate Immunity & Immune System	1 Credit 15 Lectures
	 3.1 Basic concepts in immunology-Revision 3.2 Principles of Innate & adaptive immunity- Primary, Secondary &Tertiary Barriers 3.3 Components of the immune system-Cells and organs of the immune system 3.4 Phagocytosis and inflammation-Mechanisms and link to immunity 3.5 Pattern recognition in the innate immune system A. PAMPs, B. PRRs, C. TLRs 	15 Lectures

Reference Books:

1. Microbiology, an Introduction by Tortora, Funke& Case 9th and 11th edition, Pearson education.

2. Ananthnarayan & Paniker's Textbook of Microbiology, 8thEd.

3. Mackie and McCartney Practical medical microbiology 14th edition, Publication: Churchill Livingstone

4. Brock biology of microorganism by Michael T Madigan& John M Martinco, Pearson education

5. Prescott's Microbiology, 8th Edition; Joanne M. Willey, Linda M. Sherwood,

Christopher J. Woolverton, 2011, McGraw Hill International Edition

6. Immunology Essential and Fundamental, Third Edition, Pathak and Palan, Pareen Publishers

7. Brock biology of microorganism by Michael T Madigan& John M Martinco, Pearson education

Core Course UGMBP303.2 Environmental Microbiology

Course Outcomes: Upon completion of the course, students will be able to,

CO1: Explain distribution of microbes in several different environments, including water, sediments, soil and air [2*]

CO2: Categorize methods of air, water & soil sampling [4*]

CO3: Compare & contrast between analysis methods [4*]

CO4: Apply analysis methods on various samples [3*]

CO5: Distinguish between biogeochemical cycles.[2*]

*Note: According to Bloom's Taxonomy- [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analyzing, [5]: Evaluating, [6]: Creating

ICT To	C T Tools: Videos, PPT, Smart Board											
Studer	tudents Centric Methods: Experimental, Participative, Problem Solving											
	CO-PO Mapping Matrix											
	P0-1	PO-2	PO-3	P0-4	PO-5	P0-6	P0-7	P0-8	P0-9	PO-10	PO-11	PO-12
CO1	1	0	0	0	0	0	0	0	0	0	2	3
CO2	0	0	1	1	0	1	2	3	0	0	0	0
CO3	0	0	0	1	0	0	2	0	0	0	3	0
CO4	0	0	0	0	0	0	0	1	0	0	2	3
CO5	0	0	0	0	0	0	1	0	0	2	3	0

***In CO-PO Mapping Matrix:** a correlation is established between COs and POs in the scale of 1 to 3, 1 being the slight (low), 2 being moderate (medium), 3 being substantial (high), and '-' indicate there is no correlation in respective CO and PO.

Course Code	Title	Credits/ Lectures
UGMB303.2	Environmental Microbiology	03Credits 45 Lectures
Unit-I	Air Microbiology 1.1 Aero microbiology: a. Important airborne pathogens and toxins b. Aerosols and nature of bioaerosols c. Aeromicrobiological pathway d. Microbial survival in the air e. Extramural aeromicrobiology f. Intramural aeromicrobiology 1.2 Sampling Techniques a. Sampling Devices for the Collection of Air Samples b. Detection of microorganisms on fomites 1.3 Air Sanitation 1.4 Air Quality Standards 1.5 Introduction to exobiology – a. Introduction b. Case study	1 Credit 15 Lectures
Unit-II	 Water Microbiology A] Fresh Water Microbiology 2.1 Fresh water environments and micro-organisms found in Springs, rivers and streams, Lakes, marshes and bogs 2.2 Potable water: Definition, water purification, water quality standards (WHO and BIS standards) and pathogens transmitted through water 2.3 Guidelines and limits of MPCB B]Marine Microbiology 2.4 Zonation in Marine water body 2.5 Kinds of Microorganisms in marine environment 2.6 Role and impact of marine microorganisms C]Sewage Microbiology 2.7 Modern Wastewater treatment: Primary, Secondary and Tertiary Treatment 2.8 Removal of Pathogens by Sewage treatment Processes 3.4 Oxidation Ponds and Septic tanks 2.9. Sludge Processing 3.0 Disposal of treated wastewater and biosolids. 3.1 Study of wastewater index, Rules and regulations for Disposal of sludge as well as treated wastewater. 	1 Credit 15 Lectures

Unit-III	Soil and Geomicrobiology	1 Credit
	3.1 Terrestrial Environment Soil –	15 Lectures
	Definition, Composition and function	
	Textural triangle	
	Types of soil microorganisms and their activities	
	3.2 Methods of studying soil microorganisms:	
	Sampling and Cultural methods,	
	Physiological methods	
	Immunological methods	
	Nucleic acid-based methods	
	Radioisotope techniques	
	3.3 Biogeochemical Cycles:	
	· Carbon cycle	
	Nitrogen cycle	
	· Sulphur cycle	
	· Phosphorus Cycle	
	· Iron cycle	

References Books:

- 1. Environmental Microbiology, 2nd Edition; Raina M. Maier, Ian L. Pepper, Charles P. Gerba, 2010 Academic Press
- 2. Fundamental Principles of Bacteriology, 7th Edition; A.J. Salle, Tata McGraw Hill Publishing Company
- 3. Air Quality Standards- NAAQS Manual, Volume I
- 4. Prescott's Microbiology, 8th Edition; Joanne M. Willey, Linda M. Sherwood, Christopher J. Woolverton, 2011, McGraw Hill International Edition
- 5. Fundamentals of Microbiology, 9th Edition, Frobisher, Hinsdill, Crabtree, Goodheart, 1974, Saunders College Publishing
- 6. Introduction to Environmental Microbiology Barbara Kolwzan, WaldemarAdamiak (E Book)
- 7. Soil Microbiology-4th Edition, N.S Subba Rao, 2000, Oxford and IBH Publishing Co. Pvt. Ltd

SKILL ENHANCEMENT COURSE (SEC) UGMBSEC301.2A: Analysis of Air, Water & Soil

Course Outcomes: Upon completion of the course, students will be able to,

CO1: To understand basics of Air, Water, Soil [2*]

CO2: To analyze different sampling methods [3*]

CO3: Compare & contrast between two analysis methods. [4*]

CO4: Apply analysis methods on various samples [3*]

CO5: Design different analysis methods for air, water & soil samples. [6*]

*Note: According to Bloom's Taxonomy- [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analyzing, [5]: Evaluating, [6]: Creating

ICT To	CT Tools: Videos, PPT, Smart Board											
Stude	Students Centric Methods: Experimental, Participative, Problem Solving											
	CO-PO Mapping Matrix											
	P0-1	P0-2	PO-3	P0-4	PO-5	P0-6	P0-7	P0-8	P0-9	PO-10	P0-11	PO-12
C01	1	0	2	2	1	0	2	1	2	0	2	2
CO2	1	0	0	0	0	0	0	2	0	0	0	1
CO3	1	0	2	2	0	1	2	1	1	0	3	1
CO4	1	2	0	1	0	2	1	2	1	2	1	3
CO5	1	0	2	2	0	1	2	1	1	0	3	1

***In CO-PO Mapping Matrix:** a correlation is established between COs and POs in the scale of 1 to 3, 1 being the slight (low), 2 being moderate (medium), 3 being substantial (high), and '-' indicate there is no correlation in respective CO and PO.

Course Code	Title	Credits/ Lectures
UGMBSEC 301.2A	Analysis of Air, Water & Soil	03 Credits 45 Lectures
Unit –I	 Analysis of Air 1. Chemical composition of Air: Classification of elements, chemical speciation. 2. Particles, ions and radicals in the atmosphere 3. Sampling Devices for the Collection of Air Samples 4. Bioaerosol sampling, air samplers, methods of analysis, CFU, culture media for bacteria and fungi, Identification characteristics 5. Control Measures: Fate of bioaerosols, inactivation mechanisms – UV light, HEPA filters, desiccation, Incineration. 	1 Credit 15 Lectures
Unit-II	 Analysis of Water 2.1 Water Chemistry: Chemistry of water, concept of DO, BOD, COD, sedimentation, coagulation. filtration, Redox potential 2.2 Physicochemical and Bacteriological sampling and analysis of water quality 2.3 Microbial indicators of fecal pollution: Elevated temperature test 2.4 Water borne diseases (Tabular Form): Qualitative analysis: Defined substrate test, P-A (Presence Absence test) 	1 Credit 15 Lectures
Unit-III	 Analysis of Soil 3.1 Soil architecture; 3.2 Physical properties of soil; 3.3 Soil texture; 3.4 Soil water holding capacity; 3.5 Methods of studying soil microorganisms: Direct microscopic methods, Agar plate technique, Enrichment culture technique, Buried slide technique and soil respiration technique 	1 Credit 15 Lectures

Reference Books:

- 1. Brady N.C., and R.R. Weil. 2010. Elements of the Nature and Properties of Soils, 3rd Ed. Prentice Hall.
- 2. Stewart B.A., Advances in soil sciences, Lewis Publisher, 2000.
- 3. Biswas T.D. and Mukherjee S.K., Textbook of Soil Sciences, Publisher: McGraw Hill Inc., US, 2nd edition, 1995.
- 4. Standard Methods for Examination of Water and Waste Water American Public Health Association (5th Ed) (1980)
- 5. Standard Methods for Examination of Water and Waste Water American Public Health Association (5th Ed) (1980)
- 6. Waste Water Engineering, Metcalf and Eddy Tata Mc Graw Hill,
- 7. Physico Chemical Process for Water quality, Weber. W.J, Ann Arbor. and company, New Delhi (1974)
- 8. Physico Chemical Process for Water quality, Weber. W.J, Ann Arbor.
- 9. Pelczar Jr, M J, Chan E C S, Krieg N R, (1986) Microbiology, 5thedn, McGraw-Hill Book Company,NY.
- 10.Alexander M, (1977), Soil Microbiology, 2 nd Edition Krieger Publ. Co. Melbourne, FL
- 11.Atlas R M, (1977), Principles of Microbiology2 nd Edition, Wm. C. Brown Publ. Iowa USA
- 12.Maier RM, Pepper IL and Gerba CP. (2009). Environmental Microbiology. 2nd edition, Academic Press
- 13.Hurst CJ, Crawford RL, Garland JL, Lipson DA (2007) Manual of Environmental Microbiology, 3rd edition, ASM press

SKILL ENHANCEMENT COURSE (SEC) UGMBSEC301.2B: Biofertilizers & Biopesticides

Course Outcomes- Upon Completion of this course students will able to,

CO1: Describe types of biofertilisers & biopesticides [2*]

CO2: Understand the advantages & disadvantages of biofertilisers / biopesticides [2*]

CO3: Evaluate the method for biofertilisers / biopesticides preparation. [5*]

CO4: Apply knowledge for mass scale production [3*]

C05: Design methods of biofertilisers / biopesticides preparation. [6*]

*Note: According to Bloom's Taxonomy- [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analyzing, [5]: Evaluating, [6]: Creating

ΙΟΤ Τα	CT Tools: Videos, PPT, Smart Board											
Stude	Students Centric Methods: Experimental, Participative, Problem Solving											
	CO-PO Mapping Matrix											
	P0-1	PO-2	PO-3	P0-4	PO-5	P0-6	P0-7	P0-8	P0-9	PO-10	P0-11	PO-12
CO1	1	0	2	2	1	0	2	1	2	0	2	2
CO2	1	0	0	0	0	0	0	2	0	0	0	1
CO3	1	0	2	2	0	1	2	1	1	0	3	1
CO4	1	2	0	1	0	2	1	2	1	2	1	3
CO5	1	0	2	2	0	1	2	1	1	0	3	1

***In CO-PO Mapping Matrix:** a correlation is established between COs and POs in the scale of 1 to 3, 1 being the slight (low), 2 being moderate (medium), 3 being substantial (high), and '-' indicate there is no correlation in respective CO and PO.

Course Code	Title	Credits/ Lectures
UGMBSEC 301.2B	Biofertilisers & Biopesticides	04 Credits 45 lectures
Unit -I	 Biofertilizer Introduction to Biofertilizers Structure and characteristic features of microbial biofertilizers. Types of Biofertilizers Methods of Biofertilizer Inoculation Mechanism of phosphate solubilisation and phosphate mobilization, K solubilisation. Advantages of Biofertilizers Disadvantages of Biofertilizers 	1 Credit 15 Lectures
Unit-II	 Biopesticides History and concept of biopesticides. Importance, scope and potential of biopesticide. • Definitions, viz. pathogen, botanical pesticides, and biorationales. Virulence, pathogenicity and symptoms of Entomopathogenic pathogens and nematodes. Types of biopesticides Mass scale production-Outline 	1 Credit 15 Lectures
Unit-III	 Production & Application of biofertilizers & biopesticides 1. Mass scale production of Azotobacter Rhizobial biofertilizer Sulphur oxidizing microorganisms Phosphate solubilizers 2. Checking the efficiency on crop growth 3. Formulation of biofertilizer & field application Mass scale production of Bacillus thuringenesis 5. Checking the efficacy of biopesticide on mosquito larvae 6. Formulation of biopesticide 	1 Credit 15 Lectures

Reference Books:

1. Alexander M. 1977. Soil Microbiology. John Wiley.

2. Bergerson FJ. 1980. Methods for Evaluating Biological Nitrogen Fixation. John Wiley and Sons.

3. Motsara, I.M.R., Bhattacharyya, P. and Srivastava, B. 1995. Biofertilizer Technology, Marketing and Usage- A Source Book-cum-glossary. FDCO, New Delhi.

4. Subba Rao, N.S. Biofertilizers in Agriculture and Forestry. 1993. Oxford and IBH. Publ. Co., New Delhi.

5. Burges, H.D. and Hussey, N.W. (1971). Microbial Control of Insects and mites. Academic Press, New York.

6. Burges, H.D. Formulation of microbial pesticides – Kluversep, ACB, Dordrecht-ISBN. 0412 625 202.

Coppel H.C. and J.W. Martin. (1977). Biological control of insect pest suppression. Springail.
 De Bach P. 1964. Biological control of Insect Pest and Weeds Chapman and Hall, New York.

9. Gautam, R.D. (2006). Biological suppression of insect pests. Kalyani Publisher, New Delhi. 10. Huffaker, C.B. and Messenger, P.S. (1976). Theory and Practice of Biological control.

Academic Press, New York.

11. Ignacimuthu, S.S. and Jayaraj, S. (2003). Biological Control of Insect Pests. Phoenix Publ. New Delhi.

12. Saxena, A.B. (2003). Biological Control of Insect Pests. Anmol Publ. New Delhi.

13. Huffaker, C.B. and Messenger, P.S. (1976). Theory and Practice of Biological control. Academic Press, New York.

14. Pepper HJ and Perlman D. 1979. Microbial Technology. 2nd Ed. Academic Press.

15. A century of Nitrogen Fixation Research Present status and Future propects. 1987. F.J. Bergersen and J.R. Postgate The Royal Soc., London.

16. Biology and Biochemistry of Nitrogen fixation. 1991. M.J. Dilworth, and A.R. Glenn, Elsevier, Amsterdam.

17. Nitrogen Fixation in plants. 1986. R.O.D. Dixon, and C.T. Wheeler, Blackie USA, Chapman and Hall, New York.

18. A treatise on dinitrogen Fixation Section IV. Agronomy and Ecology 1977. R.W.F Hardy, and A.H. Gibson John Wiley & Sons, New York.

19. Bioresearches technology for sustainable agriculture. 1999. S. Kannaiyan, Assoc. Pub. Co., New Delhi.

20. Biofertilizer Technology, Marketing and usage- A source Book -cum-glossary 1995. Motsara, I. M.R., P. Bhattacharyya and Beena Srivastava, FDCO, New Delhi.

21. Symbiotic nitrogen fixation in plants, 1976. P.S. Nutman, Cambridge Univ. Press, London. 22. Hand book for Rhizobia; Methods in legume Rhizobium Technology, 1994. P. Somasegaran and H.J. Hoben Springer-Verlag, New York.

23. Biofertilizers in Agriculture and Forestry 1993. N.S. Subba Rao Oxford and IBH Publ. Co., New Delhi.

LABORATORY SESSIONS

UGMBP03.2: Microbiology Practicum of Core Course 1, 2 & 3

Course Outcome: At the end of the course, learners will be able to:

CO1: Obtain in-depth information on protein catabolism and qualitative & quantitative analysis of proteins and lipids [2]*
CO2: Apply & evaluate the knowledge on Mendelian Genetics, chromosomal organization, Genetic code and Central dogma of life [4]*
CO3. Understand different epidemiological aspects and their importance and apply the knowledge of Public Health Measures to the Control of Disease [4]*
CO4.Demonstrate immunity and the different component associated with it [3]*
CO5: Explain distribution of microbes in several different environments, including water, sediments, soil and air and analyse air, water& soil samples [5*]

*Note: According to Bloom's Taxonomy- [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analyzing, [5]: Evaluating, [6]: Creating

ΙΟΤ Το	CT Tools: Videos, PPT, Smart Board											
Stude	Students Centric Methods: Experimental, Participative, Problem Solving											
	CO-PO Mapping Matrix											
	P0-1	PO-2	PO-3	P0-4	PO-5	P0-6	P0-7	P0-8	P0-9	PO-10	P0-11	PO-12
CO1	1	-	2	2	1	-	2	1	2	-	2	2
CO2	1	-	2	2	-	1	2	2	1	-	3	1
CO3	1	1	2	3	-	-	3	2	-	2	3	3
CO4	1	-	-	1	2	-	-	2	-	-	-	1
CO5	1	-	1	1	-	1	2	3	-	1	2	3

***In CO-PO Mapping Matrix:** a correlation is established between COs and POs in the scale of 1 to 3, 1 being the slight (low), 2 being moderate (medium), 3 being substantial (high), and '-' indicate there is no correlation in respective CO and PO.

Course Code	Title	Credits/ Lectures
UGMBP301.2	Practicum of Core Course 1, 2 & 3	3 Credits
Practicum of Core Course 1	 1. Study of biochemical pathway and study of end product and its characterization. a) Lysine Decarboxylase b) Oxidative and fermentative utilization of glucose by microbes c) Detection of homo and heterofermentative lactic acid fermentation 2. Estimation of Amino acids by Ninhydrin method 3. Estimation of total sugar by Anthrone(Demonstration) 4. Estimation of reducing sugar by DNSA method 5. Estimation of glycine by Sorrenson's Formal Titration. 	2 Hr/Week
	 6. Estimation of protein by Biuret method. 7. Extraction of lipid by Soxhlet method (Demonstration) 8. Problems on laws of Mendelian genetics 9. Problems on Genetic code 1. Assignment on Epidemiology, Public Health Measures for the Control of Disease 	
Practicum of Core Course 2	 Study the morphological, cultural, and biochemical characteristics of <i>E. coli</i> and <i>Salmonella species</i> (w.r.t. Digestive system infections) Demonstration of phagocytosis Study of Immunodiffusion by Mancini method (Antigen Antibody Reaction) Simulation studies of strains from fomites Case study on Covid 19 	2 Hr/Week
Practicum of Core Course 3	 Routine analysis of water: a. Detection of Coliforms in water: Presumptive Test, Confirmed Test and Completed Test b. Rapid Detection of E. coli by MUG Technique (Demonstration) 2. Enumeration of microorganisms in air and study of its load after fumigation 3. Study of air microflora and determination of sedimentation rate 4. Waste water analysis: a. Study of microbial flora in raw and treated sewage b. Determination of BOD of waste water c. Determination of COD of waste water 5. Presentation on "Water Recycling" (By students) 	2 Hr/Week

 6. Study of microorganisms in sea water 7. Isolation of bacteria, Actinomycetes and fungi from soil 8. Winogradskys column (Demo) 9. Visit to a sewage treatment plant or water purification plant 10. Analysis of sewage water collected from different regions (Pollution Index) 11. Total viable count of soil microflora 	
---	--

Laboratory Sessions Skill Enhancement Course UGMBSECP301.2A: Analysis of Air, Water & Soil

Course Outcomes: Upon completion of this course students will be able,

- **CO1**: To understand basics of Air, Water, Soil [2*]
- **CO2**: To analyse different sampling methods [3*]
- **CO3**: Apply analysis methods on various samples [3*]

*Note: According to Bloom's Taxonomy- [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analyzing, [5]: Evaluating, [6]: Creating

ICT To	ICT Tools: Videos, PPT, Smart Board											
Students Centric Methods: Experimental, Participative, Problem Solving												
	CO-PO Mapping Matrix											
	P0-1	P0-2	PO-3	P0-4	PO-5	P0-6	P0-7	P0-8	P0-9	PO-10	P0-11	PO-12
C01	1	-	2	2	1	-	2	1	2	-	2	2
CO2	1	-	-	-	-	-	-	2	-	-	-	1
CO3	1	2	-	1	-	2	1	2	1	2	1	3

***In CO-PO Mapping Matrix:** a correlation is established between COs and POs in the scale of 1 to 3, 1 being the slight (low), 2 being moderate (medium), 3 being substantial (high), and '-' indicate there is no correlation in respective CO and PO.

Course Code	Title	Credits/ Lectures
UGMBSECP 301.2	Practicum UGMBSECP301A course	1 credit
Α		
	1. Enumeration of air microflora at different places.	
Practicum SEC301A	2. Demonstration of Air Sampler.	2 Hr/Week
course	3. Qualitative analysis of drinking water.	
	4. COD of effluent water.	
	5. BOD of effluent water.	
	6. Isolation of antibiotic producing microorganism from soil.	
	7. Visit to Sewage Treatment Plant	

Laboratory Sessions Skill Enhancement Course UGMBSECP301.2B: Biofertilisers and Biopesticides

Course Outcomes [Theory]: Upon completion of this course students will able to,

CO1: Evaluate the method for biofertilisers / biopesticides preparation. [5*]
CO2: Apply knowledge for mass scale production [3*]
CO3: Design methods of biofertilisers / biopesticides preparation. [6*]

*Note: According to Bloom's Taxonomy- [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analyzing, [5]: Evaluating, [6]: Creating

ICT To	ICT Tools: Videos, PPT, Smart Board											
Students Centric Methods: Experimental, Participative, Problem Solving												
	CO-PO Mapping Matrix											
	P0-1	PO-2	PO-3	P0-4	PO-5	P0-6	P0-7	P0-8	P0-9	PO-10	PO-11	PO-12
CO1	1	-	2	2	-	1	2	1	1	-	3	1
CO2	1	2	-	1	-	2	1	2	1	2	1	3
CO3	1	-	2	2	-	1	2	1	1	-	3	1

***In CO-PO Mapping Matrix:** a correlation is established between COs and POs in the scale of 1 to 3, 1 being the slight (low), 2 being moderate (medium), 3 being substantial (high), and '-' indicate there is no correlation in respective CO and PO.

Course Code	Title	Credits/ Lectures
UGMBSECP 301.2 B	Practicum UGMBSECP301B course	1 credit
Practicum SEC301B	1. Isolation of Rhizobium from root nodules. Isolation of <i>Azotobacter ,Azospirillium</i> .	2 Hr/Week
course	I. By dilution pour plate technique and	
	II. By enrichment culture technique	
	2. Isolation and purification of P-solubilizers and <i>cyanobacteria.</i>	
	I. By dilution pour plate technique	
	II. By enrichment culture technique	
	3. Production of Rhizobium commercial biofertilizers of Azotobacter , Azospirillum.	
	4. Methods of application of biofertilizers, Biopesticides	
	5. Quality control of biopesticides.	
	6. Visits to Commercial biofertiliser & biopesticide units.	

SEMESTER IV

CORE COURSE

UGMB401.2-Biochemistry and Basic Analytical Techniques

After successful completion of each course in Microbiology a learner should be able to: **Course Learning Outcome: By the end of the course, a student will be able to:**

CO1: Understand the basic principle of microbial biochemistry [2*]
CO2: Construct experiments to carry out enzyme activity [5*]
CO3: Show separation of amino acids by chromatography [3*]

*Note: According to Bloom's Taxonomy- [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analyzing, [5]: Evaluating, [6]: Creating

ICT To	ICT Tools: Videos, PPT, Smart Board											
Students Centric Methods: Experimental, Participative, Problem Solving												
	CO-PO Mapping Matrix											
	P0-1	P0-2	PO-3	P0-4	PO-5	P0-6	P0-7	P0-8	P0-9	PO-10	P0-11	PO-12
C01	2	-	1	1	1	-	1	1	-	-	-	3
CO2	1	-	3	2	1	-	2	2	-	-	-	1
CO3	1	-	1	3	1	2	1	-	-	1	1	1

***In CO-PO Mapping Matrix:** a correlation is established between COs and POs in the scale of 1 to 3, 1 being the slight (low), 2 being moderate (medium), 3 being substantial (high), and '-' indicate there is no correlation in respective CO and PO.

Course Code	Title	Credits/ Lectures
UGMB 401.2	Microbial Biochemistry & Analytical Techniques	03 Credits 45 lectures
Unit-I	 Microbial Biochemistry 1.1Microbial growth Definition, Measurement of growth, Diauxic growth Measurements of cell constituents, Turbidity measurements, Synchronous growth, Continuous growth (Chemostast and turbidostat). 1.2 Solute Transport (With mechanism) Passive transport Active transport Facilitated diffusion Group translocation 1.3 Bioluminescence Brief survey of bioluminescent systems Biochemistry of light emission Schematic diagram Significance / Application 	1 Credit 15 Lectures
Unit-II	 Enzyme Kinetics 2.1 Introduction of Enzymes: General properties of enzymes Enzyme as a biocatalyst Michaelis-Menten equation and Lineweaver Burk plot · Classification of enzymes 2.2 Overview of Coenzyme: Coenzymes: Different types and reactions catalyzed by coenzymes (in tabular form) Nicotinic acid: structure, occurrence & biochemical Function 2.3 Enzyme Kinetics: Saturation kinetics Effect of temperature and pH Effect of Inhibitors- Reversible, irreversible, competitive, non-competitive and uncompetitive Inhibitors Multisubstrate reactions Ordered, Random and Ping-Pong reactions Allosteric effects in enzyme catalyzed reactions-Koshland Nemethy and Filmer model & Monod, Wyman and Changeux model 	1 Credit 15 Lectures

Unit III	Analytical Techniques 3.1 Chromatography Introduction to chromatography, types of Chromatography Paper chromatography: Principle, circular, ascending and descending Paper Chromatography, Separation of amino acids and monosaccharides by Paper Chromatography. Thin layer chromatography: principle, technique & application Column chromatography: Introduction & principle Exclusion chromatography, gel chromatography 3.2 Centrifugation Introduction: basic principles of sedimentation · Types,	1 Credit 15 Lectures
	0	
	3.3 Electrophoresis General principles, support media Agarose gels, polyacrylamide gels	

Reference Books:

1. Principles of Biochemistry- G. Zubay, W.W. Parson, D.E. Vance. Wm. C. Brown Publishers

2. Fundamentals of Biochemistry. D. Voet and J. Voet Publisher Wiley plus Edition 5th. 3. Lehninger- Principles of Biochemistry- David Nelson, Michael Cox. 4th edition W.H. Freeman & Company

4. Instrumental Methods of chemical analysis, V.K. Ahluwalia, Ane Books Pvt. Ltd; 2015.

5. Principles & techniques of Biochemistry &Mol biology 6th edition, Keith Wilson & John Walker, Cambridge University press, 2006

6. Laboratory manual in Biochemistry- J. Jayaraman

CORE COURSE

UGMB402.2 Introduction to Microbial Taxonomy and Diversity

Course Learning Outcome: By the end of the course, a student should develop the ability to,

CO1. Select an appropriate technique to identify a microbial genus, species, strain CO2. Predict the basic biological as well as public health implications of microbial taxonomic identifications.

CO3. Paraphrase the rationale underpinning the construction of phylogenetic trees. CO4. Classify microorganisms

CO5. Summarize characteristics of microorganisms.

*Note: According to Bloom's Taxonomy- [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analyzing, [5]: Evaluating, [6]: Creating

ICT To	CT Tools: Videos, PPT, Smart Board											
Stude	tudents Centric Methods: Experimental, Participative, Problem Solving											
					CO-P	0 Mapp	oing Ma	ntrix				
	P0-1	P0-2	PO-3	P0-4	PO-5	P0-6	P0-7	P0-8	P0-9	PO-10	PO-11	PO-12
C01	1	-	-	3	-	3	-	2	-	1	-	1
CO2	1	-	1	-	-	2	-	-	-	-	2	1
CO3	1	-	-	2	-	3	-	-	-	-	-	1
CO4	CO4 1 3 1											
CO5	1	-	-	-	-	-	-	-	-	-	-	-

***In CO-PO Mapping Matrix:** a correlation is established between COs and POs in the scale of 1 to 3, 1 being the slight (low), 2 being moderate (medium), 3 being substantial (high), and '-' indicate there is no correlation in respective CO and PO.

Course Code	Title	Credits/ Lectures
UGMB402.2	Introduction to Microbial Taxonomy And Diversity	03 Credits 45 lectures
Unit I	Microbial Taxonomy 1.1 Introduction to microbial Taxonomy Terminologies: Taxonomy, Nomenclature, Systematics, Natural classification, Species, Genus, strain, polyphasic taxonomy 1.2 Taxonomic ranks 1.3 Tools for taxonomy a) Phenetic classification b) Phylogenetic classification c) Genotypic classification, d) Numerical taxonomy e) Classical characteristics Morphological, Physiological and metabolic, biochemical characteristics, ecological characteristics, Genetic analysis f) Molecular Characteristics Nucleic acid base composition, nucleic acid hybridisation, nucleic acid sequencing 1.4 Phylogenetic Trees (a) Types, (b) Construction (an overview), 1.5 Organization of Bergey's manual of systematic bacteriology	1 Credit 15 Lectures

Unit II	Prokaryotic Diversity 2.1 Introduction to microbial diversity and phylogeny, a) A survey of prokaryotic phylogeny and diversity(Table only)	1 Credit 15 Lectures
	2.2 Diversity of bacteria Proteobacteria a)Alphaproteobacteria- Rhizobiales	
	b)Betaproteobacteria- Nitrosomonades c)Gammaproteobacteria- Enterobacterials(mix acid fermenters)	
	d)Deltaproteobacteria- Desulfovibrionales e)Epsilonproteobactria- Helicobacter, f) Firmicutes- lactobacillus,	
	g) Actinomycetales-actinomycetes,Nocardia,Streptomyces 2.3Diversity of archea	
	I)a)Euryarchaeota- Extremlyhalophlicarchaea, b)Methanogenicarchaea c)Thermoplasmatales-Thermococcus,Mrthanopyrus	
	II)Thaumarchaeota-Nanoarchaeota and korarchaeota III)Crenarchaeota-Sulfolobales	
	from terrestrial volcanic habitats) Pyrodictum(from submarine volcanic habitats	
Unit III	Eukaryotic Diversity 3.1Phylogenetic lineages of Eucarya 3.2 Protists: Introduction to a)Diplomonads & Parabasalids, Euglenozoans,Alveolates b)Stramenopiles c)Amoebozoa 3.3 Fungi- Fungal physiology,structure and symbiosis 3.4 Algae a)Chytridiomycetes	1 Credit 15 Lectures
	b)Zygomycetes and Glomeromycetes c)Acomycetes d)Mushrooms and other Basidiomycetes	
Roforonco Boo	e)Red and green algae,Endolithic phototrophs	

Reference Books:

- 1. Microbiology, an Introduction by Tortora, Funke& Case 9th and 11th edition, Pearson education.
- 2. Brock biology of microorganism by Michael T Madigan& John M Martinco,Pearson education,14th edition
- 3. Prescott's Microbiology, 8th Edition; Joanne M. Willey, Linda M. Sherwood, Christopher J. Woolverton, 2011, McGraw Hill International Edition

CORE COURSE UGMB403.2 Applied Microbiology

Course Outcomes: Upon Completion of this course students will able,

CO1: To understand basics of Dairy, Food & bioprocess technology [2*]
CO2: To analyse different spoilage methods of Food [3*]
CO3: Apply analysis methods on various samples of dairy & food industry [3*]
CO4: Design different methods of fermentation product preparation. [6*]

*Note: According to Bloom's Taxonomy- [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analyzing, [5]: Evaluating, [6]: Creating

ICT To	CT Tools: Videos, PPT, Smart Board											
Stude	Students Centric Methods: Experimental, Participative, Problem Solving											
					CO-P	0 Map	ping Ma	ıtrix				
	PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 PO-8 PO-9 PO-10 PO-11 PO-12										PO-12	
CO1	1	1	-	2	2	3	2	-	1	1	2	-
CO2	1	-	3	2	2	2	2	2	1	2	2	1
CO3	CO3 1 1 2 3 2 2 1 1 - 1 - 1											1
CO4	1	-	2	1	3	2	1	2	-	2	_	3

***In CO-PO Mapping Matrix:** a correlation is established between COs and POs in the scale of 1 to 3, 1 being the slight (low), 2 being moderate (medium), 3 being substantial (high), and '-' indicate there is no correlation in respective CO and PO.

Course Code	Title	Credits/ Lectures
UGMB403.2	Applied Microbiology	03 Credits 45 lectures
Unit –I	 Dairy Microbiology A] Raw and Market Milk 1.1 Constituents and properties of milk 1.2 Microflora of raw milk Effect of microbial contamination in Milk 1.3 Control of microorganisms in milk Microbial analysis of raw milk 1.4 Processing of market milk B] Milk Products 1.5 Butter Production 1.6 Cheese production: Cheddar, Cottage and Swiss Cheese 1.7 Dahi (Curd) 1.8 Milk power and dry Whey 1.9 Evaporated milk and Condensed milk 	1 Credit 15 Lectures
Unit-II	 Food Microbiology 2.1 Introduction: Food microbiology and food Food as a substrate for microorganism a. pH, aw, O-R potential b. Nutrient Content c. Accessory food substances d. Inhibitory substances & biological structure e. Combined effects of factors affecting growth 2.2 Food-borne Illness associated Microorganisms: a) Classification of Food-borne diseases (Schematic). b) Food -borne intoxication overview/tabulation. I. Staphylococcus food intoxication ii. Salmonellosis 2.3 General Principles of spoilage : a) Fruits and vegetables b) Meat (under aerobic & anaerobic conditions) c) Seafood, Shellfish d) Canned foods 	1 Credit 15 Lectures

	 2.4 A] General Principles of Preservation: B] Methods of Preservation: a) High temperature (including TDT, D, F, Z values, 12D concept), principle of canning b) Low temperature c) Drying d) Food preservatives (organic acids & their salts, Sugar & salt) e) Ionizing radiations f) Hurdle Technology 	
Unit-III	 Bioprocess Technology Upstream processes 3.1 Fermentation media: Characteristics of ideal production medium, Types of production media, Raw materials used for and sterilization of production media 3.2 Industrial strains: Characteristics of ideal Industrial strains, Screening of Industrial strains, screening antibiotic producers, organic acid producers and amino acid producers 3.3 Culture collection centers 3.4 Preservation of industrial cultures 3.5 Preparation of inocula 3.6 Fermenter: Characteristics of ideal fermenter STR: Design and its applications 3.7 Ethanol production 3.8 Beer fermentation 3.9 Citric acid fermentation 	1 Credit 15 Lectures

Reference Book

1. Fundamental Food Microbiology by Bibek Ray, ArunBhunia (2007), 4th edition CRC Press

2. Food Microbiology – An Introduction by Montville and Mathews, (2008), ASM Press 3.

Industrial Microbiology by Waites and Morgan, Blackwell Science

- 4. Modern Industrial Microbiology and Biotechnology by NdukaOkafor, (2007), Science Publishers.
- 5. Food Science by Sumati R. Mudambi, ShaliniRao, M.V. Rajagopal, revised 2nd edition, (2006), New Age international publications.
- 6. Prescott's Microbiology by J.M. Willey, L.M. Sherwood, C.J. Woolverton, (2011) 8th edition, McGraw-Hill International edition
- 7. Prescott, Harley and Klein's Microbiology by Willey, Sherwood, Woolverton, (2008) 7th edition, McGraw-Hill International edition
- 8. Brock Biology of Microorganisms by Madigan, Martinko, Dunlap and Clark (2009) 12th edition, Pearson Education.

- 9. Microbiology an Introduction: 9th Edition; Gerard J. Tortora, Berdell R. Funke, Christine L. Case, Pearson Education Course
- 10. Food Microbiology by Frazier 5th edition
- 11. Modern Food Microbiology by James Jay 6th edition
- 12. Applied Dairy Microbiology by Martha & Steele
- 13. BIS standards, FSSAI
- 14. Food Microbiology by Frazier

SKILL ENHANCEMENT COURSE (SEC) UGMBSEC401.2A: Food, Dairy & Bioprocess Technology

Course Outcomes: Upon Completion of this course students will able,

CO1: To understand food as a substrate [2*]

CO2: To understand health benefits of fermented dairy products [2*]

CO3: To analyse functional fermented dairy products [3*]

CO4: Compare & contrast between Prebiotics & Probiotics [4*]

C05: Analyse different packaging methods [3*]

*Note: According to Bloom's Taxonomy- [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analyzing, [5]: Evaluating, [6]: Creating

ICT To	CT Tools: Videos, PPT, Smart Board											
Stude	Students Centric Methods: Experimental, Participative, Problem Solving											
					CO-P	0 Map	ping Ma	ntrix				
	P0-1	P0-2	PO-3	P0-4	PO-5	P0-6	P0-7	P0-8	P0-9	PO-10	PO-11	PO-12
CO1	1	1	-	2	2	3	2	-	1	1	2	-
CO2	1	1	-	2	2	3	2	-	1	1	-	-
CO3	1	1	2	3	-	2	1	1	-	1	-	2
CO4	CO4 1 1 2 3 1 1 - 1 1 2											
C05	1	1	2	2	-	2	1	3	2	-	1	1

***In CO-PO Mapping Matrix:** a correlation is established between COs and POs in the scale of 1 to 3, 1 being the slight (low), 2 being moderate (medium), 3 being substantial (high), and '-' indicate there is no correlation in respective CO and PO.

Course Code	Title	Credits/ Lectures
UGMB SEC401.2A	Food, Dairy & Bioprocess Technology	03 Credits 45 Lectures
Unit –I	 Prebiotics & Probiotics Food as a substrate for microorganisms – microorganisms important in food microbiology: molds, yeasts and bacteria – factors affecting the growth of microorganisms in food, feed and fodder. Introduction and history of Probiotics, safety of probiotic microorganisms, legal status of probiotics Characteristics of Probiotics for selection. Tolerance to additives, stability during storage, stability during passage to intestinal sites, Role of probiotics in health and disease, minimum effective dose, maintenance of probiotic microorganisms Prebiotics: concept, definition, criteria, types and sources of prebiotics, prebiotics and gut microflora, Prebiotics and health benefits: prebiotics in foods. 	1 Credit 15 Lectures
Unit-II	 Dairy Technology Functional Dairy Products: Definition, fermented milk products, functional dairy products, and therapeutic applications. Processing of market milk Health benefits of functional fermented dairy products: such as dahi, lassi, yoghurt, cheese, kefir, koumiss, Yakult, fermented whey drinks, and dairy based cereal foods, soy based yoghurt containing probiotics. 	1 Credit 15 Lectures

Unit-III	 Packaging Objectives of packaging, flexible packaging, properties of the following packaging materials-low density polyethylene, high density polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, ethylene vinyl alcohol, polystyrene, polyethylene terephthalate, nylon, ethylene vinyl acetate, ethylene acrylic acid, ethylene methacrylic acid, ionomers. Antimicrobial packaging; concepts and development, · Modified atmosphere packaging(MAP) Intermediate moisture foods (IMF) Hurdle technology in processed foods. Aseptic and vacuum packaging. 	1 Credit 15 Lectures
----------	--	-------------------------

Reference Book:

1. Doyle M.P. and Buchanan R.L. (Ed.) (2013) Food Microbiology: Fundamentals and Frontiers, 4th Edn. ASM press.

2. Jay J.M., Loessner M.J. and Golden D.A. (2005) Modern Food Microbiology, 7thEdn. Springer Publishers.

3. Robinson R.K. (2002) Dairy Microbiology: Milk and Milk Products, 3rd Edn. Wiley Publishers.

4. Food Microbiology. 2nd Edition, Adams MR and Moss MO. (1995).

5. Basic Food Microbiology by Banwart George J.

6. Advances in Applied Microbiology by D. Pearlman, Academic Press.

7. Coles R, McDowell D and Kirwan MJ, Food Packaging Technology, CRC Press, 2003

8.Jenkins WA and Harrington JP, Packaging Foods with Plastics, Technomic Publishing Company Inc., USA, 1991

SKILL ENHANCEMENT COURSE (SEC) UGMBSEC401.2B: Diagnostic Microbiology

Course Learning Outcome: By the end of the course, the learner will able to

CO1. Describe post-examination procedures applicable to diagnostic microbiology [2]* **CO2.** Explain the principles behind different media utilized for the growth, isolation, or identification of microbes.[2]*

CO3. Recognize and diagnose common infectious diseases from the clinical presentation and associated microbiology. [4]*

CO4. Evaluate methods used to identify infectious agents in the clinical micro lab. [5]* **CO5.** Prioritized and choose appropriate molecular and serological methods for the detection & Identification microbes. [4] [5]*

CO6. Describe quality assessment practices for diagnostic microbiology. [2]*

*Note: According to Bloom's Taxonomy- [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analyzing, [5]: Evaluating, [6]: Creating

ICT To	C T Tools: Videos, PPT, Smart Board												
Stude	tudents Centric Methods: Experimental, Participative, Problem Solving												
					CO-P	0 Map	ping Ma	atrix					
	P0-1	P0-2	PO-3	P0-4	PO-5	P0-6	P0-7	PO-8	P0-9	PO-10	P0-11	PO-12	
CO1	1	2	1	1	1	3	2	1	2	1	-	1	
CO2	2	2	2	2	1	3	2	3	3	-	-	1	
CO3	2	-	2	3	1	3	2	3	3	-	-	1	
CO4	1	1	3	3	1	3	2	3	3	3	-	1	
CO5	CO5 2 1 2 1 1 3 2 3 3 0 - 1												
CO6	1	2	1	1	1	3	2	1	2	3	-	1	

***In CO-PO Mapping Matrix:** a correlation is established between COs and POs in the scale of 1 to 3, 1 being the slight (low), 2 being moderate (medium), 3 being substantial (high), and '-' indicate there is no correlation in respective CO and PO.

Course Code	Title	Credits/ Lectures
UGMBSEC 401.2B	Diagnostic Microbiology	03 Credits 45Lectures
Unit I	 Typical diagnostic cycle 1. Overview of the Clinical Microbiology Laboratory 2. Specimen collection a. Direct and Indirect sample collection b. Samples from normal flora sites c. Specimen for viral diagnosis d. Patient preparation, e. Special instruction, f. Transportation to the lab g. Storage before processing, 3. Primary plating media, Direct examination (microscopy), Comments 4. Cultures: a. Isolation and Identification of bacteria b. Bacteriological media c. Identification of bacteria 5. Isolation and identification of Viruses: a. Cell and organ culture b. Detection of Viral Growth c. Viral identification 	1 Credit 15 Lectures
Unit II	 Diagnostic and Clinical Microbiology 1. Isolation of Pathogens from clinical specimens: a. Types of specimens and their culture: - Blood, Urine, Feces, sputum, Cerebrospinal fluid, pus, genital and culture of anaerobes. 2.Identification of microorganisms from specimens: a. Identification criteria & characteristics for Microbial Classification (phenotypic and genotypic criteria) b. Microscopy a. Growth-Dependent Identification Methods b. Growth media and culture c. Common Biochemical tests (Metabolic fingerprinting) 	1 Credit 15 Lectures

	 3.Immunological System in Diagnosis: a. Methods for Detecting an Antigen-Antibody Reaction. Precipitation Agglutination Neutralization Complement Fixation b. Serologic Classification c. Antibody Detection (Serology) d. Antigen Detection 4. Introduction to Molecular Biological Techniques in diagnostics 	
Unit III	Clinical Laboratory Management & Quality Control Space requirement & organization of workflow Lab design with respect to safety Design of mechanical system Wall floors, ceiling & furniture Instrumentation Selection of diagnostic test Analysis of test Organization of microbiology laboratory Quality in Clinical microbiology laboratory Quality in Clinical microbiology laboratory Specimen collection & transport Standard operating procedure Personnel Reference laboratory Proficiency testing Performance check AST Maintenance of QC Record and QC stock QA Program 	1 Credit 15 Lectures

Reference Books :

- 1. Bailey and Scott's Diagnostic microbiology, 12th edition
- 2. Jawetz, Melnick and Adelberg's Medical Microbiology, 26th Edition, Lange publication
- 3. Sherries, John C, Ed, Medical Microbiology: an Introduction to infectious diseases.
- 4. Medical microbiology, Elsevier Publication IInd edition. BS Nagoba, Asha Pichare

Laboratory Sessions

UGMBP04.2-Microbiology Practicum of Core Course 1, 2 & 3

Course Outcomes: Upon Completion of this course students will able,

CO1: Construct experiments to carry out enzyme activity [5*]

CO2: Distinguish between different methods for analysis [4*]

CO3: Select an appropriate technique to identify a microbial genus, species, strain

CO4: Paraphrase the rationale underpinning the construction of phylogenetic trees, classify and characterize microorganisms

CO5: Analyse Dairy and Food samples with respect to spoilage, preservation and fermentation [4*]

*Note: According to Bloom's Taxonomy- [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analyzing, [5]: Evaluating, [6]: Creating

ICT To	CT Tools: Videos, PPT, Smart Board											
Stude	Students Centric Methods: Experimental, Participative, Problem Solving											
	CO-PO Mapping Matrix											
	P0-1	P0-2	PO-3	P0-4	PO-5	P0-6	P0-7	P0-8	P0-9	PO-10	P0-11	PO-12
CO1	1	0	3	2	1	0	2	2	0	0	0	1
CO2	2	2	3	3	1	2	1	1	0	1	1	1
CO3	1	0	0	3	0	3	0	2	0	1	0	1
CO4	1	0	0	2	0	3	0	0	0	0	0	1
CO5	1	1	2	3	3	2	1	2	0	1	1	3

***In CO-PO Mapping Matrix:** a correlation is established between COs and POs in the scale of 1 to 3, 1 being the slight (low), 2 being moderate (medium), 3 being substantial (high), and '-' indicate there is no correlation in respective CO and PO.

Course	Title	Credits
Code		
UGMBP04.2	Microbiology Practicum of Core Course 1, 2 & 3	3 credits
Practicum of Course 1	 Qualitative detection of Amylase, Lipase, Protease and Cellulase enzyme production Extracellular production of Invertase enzyme by Saccharomyces cerevisiae Determination of pH optima of Invertase enzyme activity Determination of Temperature optima of Invertase enzyme activity Determination of Enzyme concentration on Invertase enzyme activity Determination of Km and Vmax value of Invertase enzyme (Michaelis Menten & Lineweaver Burk Plot) Separation of Amino acids by Paper Chromatography Separation of Amino acids by Thin Layer Chromatography (Demonstration) Sizing of bacterial and yeast cells by Density Gradient 	2 Hr/Week
	 Centrifugation 10. Separation and visualization of Plasmid DNA by Agarose Gel Electrophoresis (Demo) 11. Isolation and study of Bioluminescent bacteria from Raja-Rani fish 12. Study of growth curve of <i>E. coli</i> in minimal and complete medium 1. Identification of Bacteria from soil and water source (Using 	
Practicum of Course 2	 Recent and the solution of bacteria from solution of an event of bacteria from solution of solution of bacteria in the solution of solution of solution of bacteria by using gel electrophonesis Study of DNA of bacteria by using gel electrophonesis Enrichment of thermophilic bacteria (Thermophiles') from hot water springs Enrichment of Acidophiles and Alkaliphiles from environment Study of Nocardia spp. using slide culture Isolation, characterization and screening of an antibiotic producing actinomycetes from soil Study of fungi using wet mount technique 	2 Hr /Week
Practicum of Course 3	 Isolation of antibiotic producers from soil. Auxanography Isolation of organisms from spoiled fruits & vegetables Determination of TDT and TDP Determination of Salt and sugar tolerance Determination of MIC of preservatives Rapid platform tests of raw and pasteurized milk. 	2 Hr / Week

 8. Microbiological analysis of raw and pasteurized Milk. 9. Microbiological analysis of Butter and Cheese (group project) 10. Study natural fermentation of raw milk (24 hours) 11. Nutritional labelling, BIS, FSSAI 12. Visit to Food/Dairy industry 	
--	--

Laboratory Sessions Skill Enhancement Course UGMBSECP401.2A: Food, Dairy & Bioprocess Technology

Course Outcomes: Upon Completion of this course students will able,

CO1: To understand food as a substrate [2*]

CO2: To understand health benefits of fermented dairy products [2*]

CO3: To analyse functional fermented dairy products [3*]

CO4: Compare & contrast between Prebiotics & Probiotics [4*]

CO5: Analyse different packaging methods [3*]

*Note: According to Bloom's Taxonomy- [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analyzing, [5]: Evaluating, [6]: Creating

ICT To	CT Tools: Videos, PPT, Smart Board											
Stude	Students Centric Methods: Experimental, Participative, Problem Solving											
	CO-PO Mapping Matrix											
	PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 PO-8 PO-9 PO-10 PO-11 PO-12								PO-12			
CO1	1	1	0	2	2	3	2	0	1	1	2	0
CO2	1	0	3	2	2	2	2	2	1	2	2	1
CO3	1	1	2	3	0	0	1	1	0	1	1	1
CO4	1	1	2	3	2	2	1	1	0	1	0	1
CO5	1	0	2	1	3	2	1	2	0	2	0	3

***In CO-PO Mapping Matrix:** a correlation is established between COs and POs in the scale of 1 to 3, 1 being the slight (low), 2 being moderate (medium), 3 being substantial (high), and '-' indicate there is no correlation in respective CO and PO.

Course Code	Title	Credits/
UGMBSECP 401.2A	Practicum UGMBSECP401.2A course	Lectures 1 credit
Practicum UGMBSECP 401.2A course	 Detection of formalin in milk Detection of hydrogen peroxide in milk using Potassium Iodide and Starch reagent Isolation of probiotic microorganism & its antibacterial activity Microbial analysis of Idli Batter. Detection of food spoilage causing organisms from Paneer and Cheese products Visit to Dairy Industry. 	2 Hr/Week

Laboratory Sessions Skill Enhancement Course UGMBSECP401.2B-Diagnostic Microbiology

Course Outcomes: Upon Completion of this course students will able to,

CO1. Describe post-examination procedures applicable to diagnostic microbiology [2]* **CO2.** Explain the principles behind different media utilized for the growth, isolation, or identification of microbes.[2]*

CO3. Recognize and diagnose common infectious diseases from the clinical presentation and associated microbiology. [4]*

CO4. Evaluate methods used to identify infectious agents in the clinical microbiology lab. [5]* **CO5.** Prioritized and choose appropriate molecular and serological methods for the detection & Identification microbes. [4] [5]*

CO6. Describe quality assessment practices for diagnostic microbiology. [2]*

*Note: According to Bloom's Taxonomy- [1]: Remembering, [2]: Understanding, [3]: Applying, [4]: Analyzing, [5]: Evaluating, [6]: Creating

ΙΟΤ Τα	CT Tools: Videos, PPT, Smart Board											
Stude	Students Centric Methods: Experimental, Participative, Problem Solving											
	CO-PO Mapping Matrix											
	PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 PO-8 PO-9 PO-10 PO-11 PO-12									PO-12		
C01	1	2	1	1	1	3	2	1	2	1	0	1
CO2	2	2	2	2	1	3	2	3	3	0	0	1
CO3	2	0	2	3	1	3	2	3	3	0	0	1
CO4	1	1	3	3	1	3	2	3	3	3	0	1
CO5	2	1	2	1	1	3	2	3	3	0	0	1
CO6	1	2	1	1	1	3	2	1	2	3	0	1

***In CO-PO Mapping Matrix:** a correlation is established between COs and POs in the scale of 1 to 3, 1 being the slight (low), 2 being moderate (medium), 3 being substantial (high), and '-' indicate there is no correlation in respective CO and PO.

Course Code	Title	Credits/ Lectures
UGMBSECP 401.2B	Practicum UGMBSECP401.2B course	1 credit
Practicum UGMBSECP 401.2B course	 Isolation and identification of microorganisms from clinical specimens - Swab, pus, sputum, stool, and urine using different medical microbiology techniques. Study of different biochemical tests w.r.t. Catalase, Oxidase, Motility, Indole Production test, Methyl Red Test, V.P Test, Citrate utilization Test, Nitrate Reduction Test, Carbohydrate Utilization Test, TSI Test, Bile solubility Test Serological identification of microorganism – Rapid malarial antigen test, Typhoid fever diagnosis, Antistreptolysis O test (ASLO), VDRL Rapid identification techniques [Demonstration of Vitek 2] Quality control in the laboratory Visit to clinical microbiology laboratory and Report writing. 	2 Hr/Week