Rayat Shikshan Sanstha's

Karmaveer Bhaurao Patil College, Vashi

(AUTONOMOUS)

Syllabus for Approval

Sr. No.	Heading	Particulars		
1.	Title of the Course	T.Y.B.Sc. in Biotechnology		
2.	Eligibility for Admission	H.S.C.		
3.	Passing Marks	40%		
4.	Ordinances/ Regulation			
5.	No. of Years/ Semester	1 Year / 2 Semesters		
6.	Level	Undergraduate (UG)		
7.	Pattern	Semester		
8.	Status	Revised (Under Autonomous Status)		
9.	To be implemented from Academic Year	2023-24		

Date:

Name of BOS Chairperson: ______Signature: _____

RAYAT SHIKSHAN SANSTHA'S KARMAVEER BHAURAO PATIL COLLEGE, VASHI

(AUTONOMOUS)

Proposed Syllabus

For

T.Y. B.Sc. in Biotechnology

2023-24

Preamble of the Syllabus:

Bachelor of Science (B.Sc.) in Biotechnology is a under graduation course of Department of Biotechnology, Karmaveer Bhaurao Patil College Vashi, Navi Mumbai, affiliated to University of Mumbai (MH). Biotechnology is defined as the application of technological principles for the processing or manipulating biological agents to provide goods and services. It derives its strength by harnessing biological processes that sustain life. It is a technology that is more reliable and firm. Biotechnology has the potential to transform the lives of the people by impacting hugely on agriculture, animal husbandry, health and medicines, environment, sustainable development, etc. Biotechnology has accomplished tremendous applications in just a matter of time. People have just started to recognize the endless window of opportunities it has open. Biotechnology has revolutionized the recent advancements in research and development. CBSGS: The Choice Based Semester and Grading System to be implemented through this curriculum would allow students to develop a strong footing in the fundamentals and specialize in the disciplines of his/her liking and abilities.

Program Education Objective (PEO's):

To prepare students to prime for-

- Higher education and research in field of biotechnology and related subjects.
- Careers related broadly to biotechnology and life sciences. Students will embark upon diverse career paths medical coding/pharmaceutical/biotechnology industries, and use their education in a variety of related endeavors.

Course Objective:

- To produce students who understand fundamental principles of basic sciences and apply that understanding to analyze, solve problems and interrelate with current technological developments.
- To promote independent learning and add rationale thinking, knowledge ability by activity based learning, innovative, teaching learning and evaluation methods.

Name of the Faculty: Science and Technology

Name of the Program: B Sc

Program Outcomes (POs):

PO-1	Disciplinary Knowledge:
	Understand the basic concepts, fundamental principles, theoretical formulations and
	experimental findings and the scientific theories related to Physics, Chemistry,
	Mathematics, Microbiology, Computer Science, Biotechnology, Information Technology
	and its other fields related to the program.
PO-2	Communication Skills: Develop various communication skills such as reading, listening
	and speaking skills to express ideas and views clearly and effectively.
PO-3	Critical Thinking: Propose novel ideas in explaining the scientific data, facts and figures
	related to science and technology.
DO 4	Analytical Descenting and Droblem Colvings Usnothesize englyze formulate and
PO-4	Analytical Reasoning and Problem Solving: Hypothesize, analyze, formulate and interpret the data systematically and solve theoretical and numerical problems in the
	diverse areas of science and technology.
PO-5	Sense of Inquiry: Curiouslyask relevant questions for better understanding of
100	fundamental concepts and principles, scientific theories and applications related to the
	study.
PO-6	Use of Modern Tools: Operate modern tools, equipments, instruments and laboratory
	techniques to perform the experiments and write the programs in different languages
	(software).
PO-7	Research Skills: Understand to design, collect, analyze, interpret and evaluate
	information/data that is relevant to science and technology.
PO-8	Application of Knowledge: Develop scientific outlook and apply the knowledge with
10-0	respect to subject.
PO-9	Ethical Awareness: Imbibe ethical, moral and social values and exercise it in day to day
	life.
PO-10	Teamwork: Work collectively and participate to take initiative for various field-based
	situations related to science, technology and society at large.
PO-11	Environment and Sustainability Create social supersons shout environment and
PO-11	Environment and Sustainability: Create social awareness about environment and develop sustainability for betterment of future.
	develop sustainability for betterment of future.
PO-12	Lifelong Learning: Ability of self-driven to explore, learn and gain knowledge and new
_	skills to improve the quality of life and sense of self-worth by paying attention to the ideas
	and goals throughout the life.

Name of the Faculty: Science and Technology

Name of the Program: B. Sc Biotechnology

Program Specific Outcomes (PSOs):

Students will be able to -

PSO-1	Identify, understand and analyze problems and propose valid solutions related to				
	field of Biotechnology.				
PSO-2	Critically evaluate biotechnological solutions on environment and societies keeping				
	in mind the need for sustainable solutions.				
PSO-3	Develop a research based ideology and technical skills to build career in				
	Biotechnology.				

Scheme of examination for Each Semester:

Continuous Internal Evaluation: 40 Marks (Common Test-20 Marks & 20 Marks for Assignment, Projects, Group discussion, Open book test, online test etc.) **Semester End Examination:** 60 Marks will be as follows –

Ι	Theory:			
	Each theory paper shall be of two and half hour duration.			
	All question	s are compulsory and will have internal options		
	Q-1	From Unit – I (having internal options.) 12 M		
	Q-2	From Unit – II (having internal options.) 12 M		
	Q-3 From Unit – III (having internal options.) 12 M			
	Q-4	From Unit – IV (having internal options.) 12 M		
	Q-5	Questions from all the FOUR Units with equal weightage of marks		
		allotted to each Unit. 12 M		
II	Practical: The External examination per practical course will be conducted as per the			
	following scheme.			
Sr. No.	Particulars of Semester End Practical Examination Total Marks			
Ι	Semester end Practical Exam300			

SEMESTER-V

S.Y.B.Sc Biotechnology (Honours) Proposed Semester-V Syllabus 2023-24

Semester V

Course code	Course Title	Cre	Course code	Course Title	Cre	Credits
		dits			dits	Total
		Co	ore Courses			
				Biochemistry-		
UGBTC501	Biochemistry-II	4	UGBTCP501	II	2	6
	Bio-analytical			Bio-analytical		
UGBTC502	Techniques	4	UGBTCP502	Techniques	2	6
	Discipline	Specifi	c Elective Courses	(Any 2)		
UGBTDSE501	Research Project	6				6
UGBTDSE502	Plant & Animal	4	UGBTDSEP502	Plant &	2	6
	Biotechnology			Animal		
				Biotechnology		
UGBTDSE503	Basic	4	UGBTDSEP503	Basic	2	6
	Pharmacology			Pharmacology		
	&Toxicology			&Toxicology		
UGBTDSE504	Developmental	4	UGBTDSEP504	Developmental	2	6
	Biology			Biology		

Core Courses

Title of Paper: UGBTC501 Biochemistry-II

Unit 1: Carbohydrate	Carbohydrate Metabolism: Glycolytic Pathway and its Regulation,
metabolism	Homolactic and Alcoholic Fermentation and its Energetics, Citric
	Acid Cycle and its Regulation; Gluconeogenesis; Pentose Phosphate
	Pathway; Glyoxalate Pathway; Reductive TCA . (Sequence of
	Reactions, Regulation & Energy Yield.)
	Electron Transport System: Electron Transport and Oxidative
	Phosphorylation. Inhibitors of ETS. Energy Rich Compounds: ATP as
	Energy Currency
	Carbohydrate biosynthesis and its regulation: Peptidoglycan in
	Bacteria ; Starch and sucrose in Plants ; Glycogen in Animals
Unit 2: Lipid	Lipid Metabolism: Mobilization, Transport of Fatty Acids. Beta,
metabolism	Alpha and Omega Oxidation of Saturated Fatty Acids;
	Oxidation of Unsaturated Fatty Acids; Oxidation of Odd Chain Fatty
	Acids. Energy Yield,
	Ketone Body Breakdown to Yield Energy. (Sequence of Reactions,
	Regulation & Energy Yield.)
	Biosynthesis and regulation of saturated and unsaturated
	fatty acids Triacylglycerol, Phospholipids and Cholesterol,
	Atherosclerosis.
Unit-3: Amino acid	Amino Acid Breakdown: Deamination, Transamination, Urea Cycle,
and nucleotide	Breakdown of Glucogenic and Ketogenic Amino Acids.
metabolism	Amino Acids as Biosynthetic Precursors: Biosynthesis of Epinephrine,
	Dopamine, Serotonin, GABA, Histamine, Glutathione. (Sequence of
	Reactions & Regulation.), Nucleotide Metabolism: Degradation of
	Purines and Pyrimidines.
Unit 4: Endocrinology	Mechanism of action of group I and II hormones; Structure, storage,
	release, transport,
	biochemical functions and disorders associated with hormones
	secreted by Hypothalamus ;
	Anterior Pituitary gland - GH, stimulating hormones) ; Posterior
	Pituitary gland – oxcytocin
	and vasopressin; Thyroid gland – Thyroxine, calcitonin; Parathyroid gland – PTH;
	Adrenal medulla – epinephrine and norepinehprine ; Adrenal cortex –
	Glucocortocoids;
	Pancreas - insulin and glucagon ; Female Gonads - estrogen and
	progesterone ; Male gonads – testosterone ; Placenta – hCG .

References:

1. Lehninger, principles of biochemistry, 4th edition (2005), David Nelson and Michael

Cox W.H. Freeman and Company, New York.

2. Harper's Illustrated Biochemistry, 27th edition, RK Murray, DK Granner, PA Mayes and VW Rodwell, McGraw Hills publication.

3. Biochemistry, 4nd edition (2017), Satyanarayana and Chakrapani, Books & Allied (P) Ltd

Proposed Practicals

UGBTCP-501 Biochemistry-II

1.	Determination of blood glucose levels for detection of diabetes mellitus.
2.	Determination of serum cholesterol (total, HDL and LDL ratio)
3.	Estimation of protein by Lowry's method
4.	Estimation of protein by Bradford method
5.	Liver Function Tests: (SGPT, SGOT)
6.	Kidney Function Test: (Urea from Serum).
7.	Estimation of Uric Acid and Creatinine in Urine.
8.	Qualitative Detection of Ketone Body in Urine.

Title of Paper: UGBTC502 Bio-Analytical Techniques

Unit – 1: Spectroscopy	UV-Visible Spectroscopy-Principle, instrumentation, working and applications of: Fluorescence Spectroscopy, Light scattering spectroscopy, Infrared Spectroscopy, Atomic absorption Spectroscopy, Mass Spectroscopy, NMR, ESR, Surface plasmon resonance
Unit – 2: Centrifugation	Basic principle of sedimentation; Types of rotors - fixed-angle rotors, vertical tube rotors and swinging-bucket rotors; Types of centrifugation – Preparative & Analytical, Differential centrifugation – Principle, Working and Applications, Density-gradient centrifugation - Principle, Working and Applications, Ultracentrifugation
Unit - 3 Chromatography	Principle, working and applications of: Paper chromatography, TLC, Affinity chromatography, Ion-exchange chromatography, Molecular (size) exclusion chromatography; HPLC; Gas Chromatography - Method development and validation.
Unit – 4: Electrophoresis	General principle, Support media, Electrophoresis of Proteins – Native PAGE, SDS-PAGE, Isoelectric Focusing, 2D-PAGE, Cellulose acetate electrophoresis (Principle, Instrumentation, Detection, application); Electrophoresis of nucleic acids – Agarose Gel Electrophoresis, Pulsed-field gel electrophoresis (Principle, Instrumentation, Detection, application), Capillary electrophoresis, DGGE (Density gradient gel electrophoresis)

References

1. Principles and Techniques in Biochemistry and Molecular Biology (2010), Keith Wilson and John Walker, 7th edition, Cambridge University Press

2. Biophysics (2002) Vasantha Pattabhi and N. Gautham, Kluwer Academic Publishers

3. Physical Biochemistry: principles and applications, 2nd edition (2009), David

Sheehan, John Wiley & Sons Ltd

4. HPLC method validation for pharmaceuticals: a review (2013), Harshad V. Paithankar, International Journal of Universal Pharmacy and Bio Sciences 2(4): July-August.

Proposed Practicals

UGBTCP-502 Bio-Analytical techniques

1.	Separation of components from a mixture using Affinity chromatography (Kit may be
	used)
2.	Separation of components from a mixture using ion exchange chromatography (Kit may
	be used)
3.	Separation of components from a mixture using Size exclusion chromatography (Kit
	may be used)
4.	HPLC method validation.
5.	Separation of components using density gradient centrifugation
6.	Separation of components using differential centrifugation
7.	SDS - PAGE
8.	Study of Beer- Lambert's Law by Spectropotometerty.

Discipline Specific Elective Courses (Any2)

Title of Paper: UGBTDSE501; Research Project

Students have to complete an individual research project and submit their dissertation at the end of semester-5, which will be evaluated by internal and external examiners for certification.

Review of	Planning and	Pilot	1 st Progress	2 nd Progress	Final Report
literature presentation	Designing of experiments	experiments	Report	Report	and Presentation (Dissertation)
(20 Marks)	(10 Marks)	(10 Marks)	(20 Marks)	(20 Marks)	(20 Marks)
July	August	September	September	October	Oct-
Last Week	2 nd Week	1 st Week	Last Week	1 st Week	Last Week

Note: Above are the tentative dates and are subjected to change as per academic calendar.

Title of Paper: UGBTDSE502; Plant & Animal Biotechnology

Unit I	History of DTC Call Theory Concept of Call Culture
	History of PTC, Cell Theory, Concept of Cell Culture,
Introduction to Plant Tissue	Cellular Totipotency,
Culture	Organization of Plant Tissue Culture Laboratory
	Equipments and Instruments used in PTC
	Laboratory organization: Washing and storage facilities, Media
	preparation room, Transfer area, Culture room, Aseptic
	Techniques: Washing of Glassware, Media and explant
	Sterilization, Aseptic Workstation, Precautions to maintain
	Aseptic Conditions.
Unit II	Culture Medium: Nutritional requirements of the explants,
Media preparation and	PGR's and their in-vitro roles, Media Preparation: Media
Applications of PTC	composition, Inorganic nutrients, Carbon and Energy source,
	Organic supplements, Growth regulators, Solidifying agents,
	pH, Widely used media in PTC
	Callus Culture Technique: Introduction,
	Principle and Protocols, Applications of PTC: Industrial
	applications, Applications to Horticulture and Forestry
Unit III:	Experimental animals as model organisms and their
Introduction to Animal	maintenance, Basics of Animal Tissue Culture
Tissue Culture	Introduction: Cell Culture Techniques, Equipment and
	Sterilization Methodology.
	Introduction to Animal Cell Cultures: Nutritional and
	Physiological parameters, Growth Factors and Growth
	Parameters. General Metabolism and Growth Kinetics
	Primary Cell Cultures : Establishment and Maintenance
	Secondary cell cultures and its maintainance, Adherent and
	Non-Adherent Cell Lines with examples.
Unit IV: Applications of ATC	Recombinant proteins, Use of cell lines in research, Basic
and Biosafety in	concept of animal cloning, Cloning for conservation of
Biotechnology	endangered species, Hybridoma technology, Tissue
Distections	engineering, Vaccine production, Biosafety and Biosafety
	cabinets
	vaomoto

References

- 1. Culture of Animal cells- Ian Freshney -- John Wiley & Sons
- 2. Introduction to Plant tissue culture,
- 2. Principles and Practice of Animal Tissue culture- Sudha Gangal University Press
- 3. Plant Biotechnology- K. G. Ramavat S.Chand Publications
- 4. Experiments in Plant tissue culture- Dodds and Roberts- Cambridge University Press

Proposed Practicals

UGBTDSE-502 Bio- Plant & Animal Biotechnology

1.	1. Working and use of various Instruments used in Biotechnology Laboratory (Autoclave, Hot air Oven, Centrifuge, Incubator, Rotary Shaker, Filter Assembly, LAF, pH meter and Colorimeter)
2.	Laboratory Organization and Layout for Plant and Animal Tissue Culture Laboratory
3.	Preparation of Stock Solutions and Preparation of Media for PTC
4.	Aseptic Transfer Technique, Surface Sterilization and Innoculation for Callus Culture
5.	Media Preparation and Sterilization (ATC)
6.	Trypsinization of Tissue and Viability Count

Title of Paper: UGBTDSE 503 : Basic Pharmacology & Toxicology

Unit 1 Conoral Dringinlag of	Routes of drug administration, Mechanism of drug action, drug
Unit-1 General Principles of	
Pharmacology	receptors and biological responses, second-messenger systems,
	the chemistry of drug-receptor binding, dose-response
	relationship, therapeutic
	index, ED, LD, Potency and Intrinsic Activity, drug
	antagonism.
Unit-2: Drug Absorption and	Drug development process, Absorption of drugs from the
Distribution	alimentary tract, factors affecting rate of gastrointestinal
	absorption, absorption of drugs from lungs, skin, absorption of
	drugs after parenteral administration, factors influencing drug
	distribution, binding of drugs to plasma protein, Physiological
	barriers to drug distribution.
Unit-3: Metabolism and	
	Biotransformation: Synthetic and Non-synthetic, Inhibition of
Excretion of drugs	drug metabolism, Microsomal enzyme induction,
	Consequences and possible uses, first pass metabolism
	Excretion of drugs, Urine, Feces, Exhaled air, Saliva, Sweat
	and Milk, Renal excretion
Unit-4:Basic Toxicology and	Background Definitions, Causation: degrees of certainty
Regulatory Toxicology	Classification, Causes Allergy in response to drugs, Effects of
	prolonged administration, Chronic organ toxicity, Adverse
	effects on reproduction, Poisons: Deliberate and accidental
	self-poisoning, Principles of treatment, Poison-specific
	measures, General measures, Specific poisonings: cyanide,
	methanol, ethylene glycol, hydrocarbons, volatile solvents,
	heavy metals, herbicides and pesticides, biological substances,
	Overdose of medicinal drugs is dealt with under individual
	agents, Incapacitating agents: Drugs used for torture, Non-
	medical use of drugs.

References

1. Textbook of Medical Physiology Guyton, A.C and Hall 11th edition J.E Saunders

- 2. Modern Pharmacology with clinical Applications Craig. C.R, Stitzel. R.E, 5th edition
- 3. Clinical Pharmacology Bennet. P.N, Brown. M.J, Sharma.P, 11th edition Elsevier

4. Biochemistry Metzler, D.E Elsevier

Proposed Practicals

UGBTDSEP503, Basic Pharmacology & Toxicology

1.	LD50 evaluation using suitable models
2.	ED50 evaluation using suitable models
3.	Case study on poisoning

Title of Paper: UGBTDSE504; Developmental Biology

Unit 1:	Overview of modern era of developmental biology, Stages of development,		
Introduction to	cell fate & commitment, concept of embryonic stem cells, terminal		
Developmental	differentiation, lineages of three germ layers, fate map; Mechanisms of		
Biology	differentiation- cytoplasmic determinants, embryonic induction, concept of		
	morphogen, mosaic and regulative development, Pattern formation-axis		
	specification, positional identification (regional specification),		
Unit 2:	Fertilization: Structure of the Gametes - Sperm, Egg, Recognition of egg and		
Fertilization	sperm.		
	External Fertilization in Sea Urchins: Sperm attraction: Action at a distance,		
	The acrosome reaction, Recognition of the egg's extracellular coat, Fusion of		
	the egg and sperm cell membranes, The fast block to polyspermy, The slow		
	block to polyspermy, Calcium as the initiator of the cortical granule reaction		
	Internal Fertilization in Mammals: Getting the gametes into the oviduct:		
	Translocation and capacitation, In the vicinity of the oocyte: Hyperactivation,		
	thermotaxis and chemotaxis, Recognition at the zona pellucida, Gamete fusion		
	and the prevention of polyspermy, Fusion of genetic material		
Unit 3: Early	Cleavage, Pattern of embryonic cleavage, The cytoskeletal mechanisms of		
Embryonic	mitosis, Gastrulation, Formation of the extra-embryonic membranes, Axis-		
Development	formation, Anterior-posterior axis, dorsal-ventral axis and right-left axis,		
	Control of blastomere identity, Cell specification		
Unit 4: Sex	Primary Sex Determination in Mammals: The developing gonads,		
Determination	Mechanisms of mammalian primary sex determination, Secondary Sex		
	determination in Mammals - The genetic analysis of secondary sex		
	determination, Hormonal Regulation of the Sexual Phenotype in mammals		
	Chromosomal Sex Determination: The Sex-lethal gene, Dosage Compensation		

References:

1. Molecular Cell Biology. 7th Edition, (2012) Lodish H., Berk A, Kaiser C., K Reiger

M., Bretscher A., Ploegh H., Angelika Amon A., Matthew P. Scott M.P., W.H.

Freemanand Co., USA

2. Molecular Biology of the Cell, 5th Edition (2007) Bruce Alberts, Alexander Johnson,

Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. Garland Science, USA

3. Cell Biology, 6th edition, (2010) Gerald Karp. John Wiley & Sons., USA

4. The Cell: A Molecular Approach, 6th edition (2013), Geoffrey M. Cooper, Robert E. Hausman, Sinauer Associates, Inc. USA

5. Developmental Biology; Scott Gilbert; 9th Edition

Proposed Practicals

UGBTPDSE504; Developmental Biology

1.	Study of different stages of Meiosis (Permanent Slides of animal origin)
2.	Study of different stages of Mitosis (Permanent Slides of animal origin)
3.	Study of chick embryo development stages (With permission of Ethical Committee
	only Demonstration)
4.	Effect of heavy metal (HgCl2/PbNO3/AgCL2) on development of chick embryo
	(With permission of Ethical Committee only Demonstration)
5.	Model organisms in Developmental biology with examples (Group activity).

SEMESTER-VI

S.Y. B. Sc Biotechnology (Honours) Proposed Semester IV Syllabus 2022-23

Semester VI

Course code	Course Title	Cre	Course code	Course Title	Cre	Credit
		dits			dits	s Total
		Co	ore Courses			
UGBTC601	Regulation,	4	UGBTCP601	Regulation, Genomes &	2	6
00010001	Genomes & Omics	4	UGBICF001	Omics	2	0
	Bioprocess					
UGBTC602	Technology	4	UGBTCP602	Bioprocess	2	6
				Technology		
	Discipline S	pecific	c Elective Courses	(Any 2)		
UGBTDSE601	Agribiotechnology	4	UGBTDSEP601	Agribiotechnol	2	6
				ogy		
UGBTDSE602	Marine	4	UGBTDSEP602	Marine	2	6
	Biotechnology			Biotechnology		
UGBTDSE603	Environmental	4	UGBTDSEP603	Environmental	2	6
	Biotechnology			Biotechnology		
UGBTDSE604	Bioinformatics	4	UGBTDSEP604	Bioinformatics	2	6

Core Courses

Title of Paper: UGBTC601 ; Regulation, Genomes & Omics

Unit 1: Unit 1:	Prokaryotes (In Bacteria):lac operon of E. coli (revision), trp operon of
Regulation of Gene	E. coli, Ara operon
Expression in	In Viruses: Lytic / Lysogenic Regulation
Prokaryotes and	In Eukaryotes: Control of Transcriptional Initiation by GTF, activator
Eukaryotes	and co-activator, Re-modelling of chromatin (Histone acetylase and
	nucleosome remodelling concept), Gene Silencing by Methylation,
	telomere position effect and Genomic Imprinting, Post-
	Transcriptional Control
Unit 2:Genetic	Transgenic plants: Physical methods of transferring genes to plants:
Engineering in Plants	electroporation, microprojectile bombardment, liposome mediated,
and Animals	protoplast fusion; Chemical Methods for transferring genes to plants
	:Calcium phosphate, DEAE dextran
	Transgenic Animals: Models of Transgenic animals in diabetes, CVD,
	BP, Kidney stones, Transgenic mice- methodology-retroviral method,
	DNA microinjection, ES method; genetic manipulation with cre-loxP;
	Vectors for animal cells; Transgenic animals recombination system;
	Cloning live stock by nuclear transfer; Transgenic Livestock,
	Synthetic biology- improvement of seed quality proteins and
	transgenic fish.
Unit 3: Gene	Gene sequencing and editing, Maxam Gilbert's method, Sanger's
Sequencing and	method,
Editing	Automated DNA sequencing, Pyro-sequencing; Next generation
	Sequencing;
	Human genome mapping and its implications in health and disease;
	RNAi, ZNF(Zinc finger nucleases), TALENS (Transcription Activator
	Like Effectors Nucleases), CRISPER/Cassystem (Clustered Regularly
	Interspersed Repeats), DNA fingerprinting, Gene therapy
	(Sickle cell anemia, Cystic fibrosis)
Unit 4: Introduction	Introduction and History of "Omics", Types of Omics, Components of
to "Omics"	Omics; Goal, Principle, Techniques, Applications of - Genomics,
	Epigenomics, Transcriptomics, Proteomics, Metabolomics,
	Bioinformatics based approach for "Omics".
k	**

References:

- 1. iGenetics A Molecular Approach 3rd Edition Peter J. Russell.
- 2. Molecular Biotechnology-Principles and Applications of Recombinant
- DNA Technology 3rd Edition Glick B.R., Pasternak J.J., Patten C.L.
- 3. Principles of Gene Manipulation 7th Edition Primrose S.B., Twyman R.M
- 4. Biotechnology 3rd Edition S.S. Purohit.
- 5. Genomes 3rd Edition T.A. Brown.
- 6. Biotechnology B.D. Singh.
- 7. Gene Cloning and DNA Analysis 6th Edition T.A. Brown.
- 8. Genomics Cantor C.R., and Smith C.L. John Wiley & Sons. (1999)
- 9. Drug Discovery and Evaluation, H. Gerhard Vogel

Proposed Practicals

UGBTCP601; Regulation, Genomes & Omics

1.	Transformation in E.coli.
2.	Genomic DNA Extraction: Animal cells.
3.	Restriction enzyme digestion and ligation (Kit may be used).
4.	Polymerase chain reaction. (Demonstration)
5.	Gradient plate technique
6.	Bacterial gene expression (Kit may be used).

Title of Paper: UGBTC602 ; Bioprocess Technology

Unit 1: Introduction:	Definition, Applications of fermentation technology in Food and other		
Fermentation	Industries.		
technology and types	Types of Microorganisms used in Industrial Processes:		
of microorganisms	Bacteria, Actinomycetes, fungi and algae.		
used in fermentation	Screening and maintainance of Strains:		
	Primary Screening, Secondary Screening, Cultivation		
	Preservation of Industrially Important Microbial Strains		
Unit-2: Basic design of	Fermenter and Fermentation processes Design of fermenter		
fermenter	Stirred Tank Fermenter- Basic Design, Parts of a Typical Industrial		
	fermenter. Fermentation Media: Components, Design and		
	Optimization.		
	Sterilization: Sterilization of fermenter and fermentation media.		
	Introduction to Inoculum development, Bacterial and fungal inoculum		
	development with one example each,		
	Process parameters: pH, Temperature, Aeration, Agitation(Dissolved		
	Oxygen), Foam etc.		
	Types of fermentation:		
	Surface and submerged, Batch and continuous, Aerobic and		
	Anaerobic.		
Unit-3: Down Stream	Introduction of DSP; Foam separation; Types of Precipitation;		
Processing	Filtration, Centrifugation; Chromatography in DSP; Cell disruption-		
	physical and chemical methods, Solvent recovery, Membrane		
	processes, Drying, Crystallization and Whole broth processing.		
Unit 4: Fermentation	Production of Streptomycin, Protease, Citric acid, Lysine, Ethanol		
Process	production, Beer and wine production, Penicillin, cheese, Butter,		
	Acetic acid		
	Actic aciu		

References

- 1. Biotechnology, S.S. Purohit
- 2. Principles of Gene Manipulations, Primrose
- 3. Gene Cloning, T.A.Brown
- 4. The Dictionary of Cell and Molecular Biology, 4th ed., J.M. Lackie

Proposed Practicals

UGBTCP602 Bioprocess Technology

1.	Estimation of Milk protein-Pynes method
2	Microbial analysis of Milk by MBRT and RRT
3	Phosphatase test in Milk
4	DMC of milk sample
5	Isolation of Normal flora from milk and curd

Discipline Specific Elective Courses (Any2)

Title of Paper: UGBTDSE601: Agri Biotechnology

Unit-1:	Introduction to Agriculture and Agriculture systems, Green
Precision Agriculture and	house Technology- Types of
Agriculture Systems	green house, importance, functions and features of green
	house, Design criteria and
	calculation, Construction material, covering material and its
	characteristics, growing media,
	green house irrigation system, nutrient management,
	Greenhouse heating, cooling and
	shedding and ventilation system, Computer controlled
	environment, Phytotrons, fertigation
	and roof system, Precision Cultivation- tools, sensors for
	information acquisition
Unit-2: Plant Stress Biology	Abiotic Stress – Physiological and molecular responses of
	plants to water stress, salinity
	stress, temperature stress - heat and cold, Photo-oxidative
	stress, stress perception and stress
	signaling pathways, Ionic and osmotic homeostasis, reactive
	oxygen species scavenging,
	Biotic stress - plant interaction with bacterial, viral and fungal
	pathogens, plant responses to
	pathogen- biochemical and molecular basis of host-plant
	resistance, toxins of fungi and
	bacteria, systemic and induced resistance -pathogen derived
	resistance, signaling
Unit-3: Molecular Markers	Genetic markers in plant breeding- Classical markers, DNA
in Plant Breeding	markers (RFLP, RAPD, AFLP,SSR, SNP, Application of
	Molecular Markers to Plant Breeding [quantitative trait locus
	(QTL) mapping], Plant DNA Barcoding- Barcoding Markers
	(matK, rbcl, ITS, tmHpsbA),
	steps, recent advances, Benefits, Limitations
Unit-4: Biofertilizers and	Biofertilizer, Nitrogen-fixing Rhizobacteria - Symbiotic
Biopesticides	Nitrogen Fixers, Nonsymbiotic Nitrogen Fixers, Plant Growth
	Promoting Microorganisms – Phosphate Solubilizing Microbas (PSM) Phytohormonas and Cytokining Induced
	Microbes (PSM), Phytohormones and Cytokinins, Induced Systemic Resistance, Plant Growth Promotion by Fungi -
	Mycorrhizae, Arbuscular, Mycorrhizae, Ectomycorrhizae,
	Microbial Inoculants - Inocula, Carriers, and Applications,
	Monoculture and Co-culture
	Inoculant Formulations Biocontrol, Polymicrobial Inoculant
	Formulations, Biopesticides –types, Bacillus thuringiensis,
	insect viruses and entomopathogenic fungi (characteristics,
	physiology, mechanism of action and application)
	physiology, mechanism of action and application)

References

- Textbook of Biotechnology, R C Dubey
 Biofertilizers in agriculture and Forestry, N. S. Subbarao

Proposed Practicals

UGBTDSEP601: Agri Biotechnology

1	RAPD analysis demonstration experiment
2	Isolation of Rhizobium
3	Isolation of Azotobacter
4	Isolation of Phosphate solubilising bacteria
5	Study of effect of abiotic stress on plants.
6	Rapid screening tests for abiotic stress tolerance (Drought, PEG, Mannitol & salinity
	NaCl)
7	Estimation of antioxidants and antioxidant enzymes – Ascorbate & Proline
8	Visit to green house facility and submission of field visit report.

Title of Paper: UGBTDSE602: Marine Biotechnology

Introduction to Marine Biotechnology; Applications of Marine
Biotechnology The marine ecosystem and its functioning:
intertidal, estuarine, salt marsh, mangrove, coral reef, coastal &
deep sea ecosystems. Hydrothermal vents, Bioprospecting,
Marine Microbial Habitats and their Biotechnologically
relevant Microorganisms, Biotechnological Potential of Marine
Microbes, Bioactive compounds from other Marine
Organisms: fungi, Microalgae, Seaweeds, Acinimycetes,
sponges.
Drugs from Marine organisms: Pharmaceutical compounds
from marine flora and fauna –
marine toxins, antiviral and antimicrobial agents. Approved
Marine Drugs as Pharmaceuticals Marine Natural products and its Challenges; Marine Natural
Products and Clinical Trials, Marine Microbial Enzymes:
Marine Extremozymes and Their Significance, Current Use of
Marine Microbial Enzymes.
Marine Functional Foods: Marine sources as healthy foods or
reservoirs of functional ingredients, Marine-derived
Ingredients with biological properties, Functional Foods
Incorporating Marine-Derived Ingredients, Marine
Nutraceuticals: Marine Bioactives as Potential Nutraceuticals,
Functional Carbohydrates, Polyunsaturated Fatty Acids,
Carotenoids, Soluble Calcium, Fish Collagen and Gelatin,
Marine Probiotics, Nutraceutical Market Trendsand Quality
Control.
Marine Bioresources, Marine Secondary Metabolites, Marine
Proteins, Marine Lipids; Futuretrends in Marine
Pharmaceuticals, Cosmetics from Marine Sources: Scenario of Marine Sources in the Cosmetic Industry cosmetics:
Marine Sources in the Cosmetic Industry, cosmetics: Definition and Regulations, Cosmeceuticals, Target Organs
and Cosmetics Delivery Systems, Components of Cosmetics,
Major Functions of Some Marine Components in Cosmetics,
and Cosmeceuticals, Treatments Based on Marine Resources,
Products Based on Marine Resources

References

1. Kim, S.K. Springer Handbook of Marine Biotechnology; Springer: Berlin, Germany; Heidelberg, Germany, 2015.

2. Nollet, Leo M. L- Marine microorganisms- extraction and analysis of bioactive compounds-CRC Press_Taylor& Francis (2017)

3. R. S. K. Barnes, R. N. Hughes(auth.)-An Introduction to Marine Ecology, Third Edition-Wiley-Blackwell (1999)

4. Blanca Hernández-Ledesma, Miguel Herrero-Bioactive Compounds from Marine Foods-Plant and Animal Sources-Wiley-Blackwell (2013)

 Fabio Rindi, Anna Soler-Vila, Michael D. Guiry (auth.), Maria Hayes (eds.)-Marine Bioactive Compounds_Sources, Characterization and Applications-Springer US (2012)

6. W. Evans-Trease and Evans Pharmacognosy 15th ed.-Saunders (2010)

Proposed Practicals

UGBTDSE602 Marine Biotechnology

1	Study of any 5 marine bacteria and algae (Macro and micro)
2	DPPH assay for antioxidant extracted from marine algae
3	Extraction of carotenoids from marine algae/Bacteria/Fungi
4	Extraction and estimation of Gelatin / Collagen.
5	Extraction of alkaloids from marine organisms and their separation by TLC.

Title of Paper: UGBTDSE603: Environmental Biotechnology

Unit 1:	Sources of Pollution, Air Pollution: Types, Sources, Classification of Air
Environmental	Pollutants, Air Pollution Monitoring and Control, Water Pollution: Causes,
Pollution and	Types and Classification, Eutrophication, Assessment of Water Quality,
its Effects	Pollutant Monitoring and Control, Soil and Solid Waste Pollution:
	Characteristics of Wastes, Impacts of Solid Waste on Health, Occupational
	Hazards and Control, Soil Erosion: Concept, Causes and Effects, Green house
	effect, Global Warming, Ozone Depletion, Kyoto Protocol, UV Radiation,
	Acid Rain.
Unit 2:	
Renewable 2.	and Hydropower, Biomass energy, Biogas technology- Biogas plant & types,
Resources	Bio-digester, Biogas- composition, production and factors affecting
Resources	production, uses; Bio-fuels – Ethanol production, Microbial hydrogen
	production, discs, Dio-rucis – Ethanor production, Wierobian Hydrogen production Biodiesel, Petro-crops
Unit 3: Effluent	
& Wastewater	treatment- activated sludge process, CASP, advanced activated sludge
Treatment	processes (any two) Biological filters, RBC, FBR, Anaerobic biological
	treatment- Contact digesters, Packed bed reactors, Anaerobic baffled
	digesters, UASB, Solid waste treatment, Pollution indicators &
	Biosensors
Unit 4:	Concept of Bioremediation, Biodegradation of xenobiotics- Persistent
Bioremediation	compounds, Chemical properties influencing biodegradability,
	Microorganisms in Biodegradation, Use of immobilized enzymes or microbial
	cells for treatment, Heavy metal pollution - Sources, microbial systems for
	heavy metal accumulation, Techniques used for heavy metal removal,
	Bioaugmentation and Biostimulation, Biosorption by bacteria, Fungi and
	algae, Factors affecting Biosorption, limitations of Biosorption

References:

1. Environmental Biotechnology Allan Scragg Oxford University press

2. Environmental Biotechnology (Basic concepts and applications) Indu Shekar Thakur IK International

3. Environmental Biotechnology (Industrial pollution management) S.D. Jogdand Himalaya Publishing House

Proposed Practicals

UGBTDSEP603Environmental Biotechnology

1.	Study the effect of heavy metals on the growth of bacteria.
2.	Determination of Total Solids from an effluent sample.
3.	Study of physico-chemical (pH, color, turbidity, BOD, COD) parameters of any one
	industrial effluent sample
4.	Estimation of chromium from Effluents (Demonstration)
5.	Visit to ETP/CETP

Title of Paper: UGBTDSE604 Bioinformatics

Unit 1: Bioinformatics	Bioinformatics, History, Goals, applications of bioinformatics
and Biological	Biological Databases : Classification of Databases - Raw and
Databases	Processed Databases; Primary (NCBI), Secondary (PIR) and Tertiary
	or Composite (KEGG) Databases; Structure and Sequence Databases.
	Specialized Databases - Protein Pattern Databases; Protein Structure
	and Classification Databases (CATH/SCOP). Genome Information
	Resources: DNA Sequence Databases Specialized Genomic
	Resources. Protein Databases based on Composition, Motifs and
	Patterns. Protein Structure Visualization Software
Unit 2: BLAST and	BLAST and its Types; Retrieving Sequence using BLAST.
Sequence Alignment	Pairwise Alignment : Identity and Similarity; Global and Local
	Alignment; Pairwise Database Searching. Multiple Sequence
	Alignment: Goal of Multiple Sequence Alignment; Computational
	Complexity; Manual Methods; Simultaneous Methods; Progressive
	Methods; Databases of Multiple Alignment; Secondary Database
	Searching; Analysis Packages;
Unit-3 Homology,	Homology & Similarity, Phylogeny & relationships, Approaches used
Phylogeny, &	in phylogenetic analysis, Phylogentic trees- tree building methods,
Evolutionary trees	Molecular approaches to phylogeny, Phylogentic analysis databases
Unit-4 Drug Discovery	Discovering a drug, Target identification & validation, Identifying a
& Pharmainformatics	Lead Compound, Optimization of Lead compound,
	Pharmainformatics, Chemical libraries, Search programs ;
	Cheminformatics - Chemical Structure Representation (SMILE &
	SMART).Chemical databases: CSD, ACD, WDI, ChemBank,
	hazardous chemical database, PUBCHEM Chemical Structure
	Representation (SMILE & SMART).Chemical databases: CSD, ACD,
	WDI, ChemBank, hazardous chemical database, PUBCHEM

References:

- 1. Basic Bioinformatics, S. Ignacimuthu
- 2. Introduction to Bioinformatics, T.K.Attwood
- 3. Introduction to Bioinformatics, Sundara Rajan

Proposed Practicals

UGBTDSEP604Bioinformatics

1.	Familiarization with NCBI, EMBL, DDBJ, PIR, KEGG Databases.
2.	Use of NCBI BLAST Tool.
3.	Pairwise and Multiple Sequence Alignment and Phylogeny.
4.	Classification of Proteins using CATH/SCOP.
5.	Visualization PDB Molecules using Rasmol/Raswin.
6.	Chemical structure representation

