Rayat Shikshan Sanstha's Karmaveer

Bhaurao Patil College, Vashi

(AUTONOMOUS)

Syllabus for Approval

Sr. No.	Heading	Particulars
1.	Title of the Course	S.Y.B.Sc. in Biotechnology
2.	Eligibility for Admission	H.S.C.
3.	Passing Marks	40%
4.	Ordinances/ Regulation	
5.	No. of Years/ Semester	1 Year / 2 Semesters
6.	Level	Undergraduate (UG)
7.	Pattern	Semester
8.	Status	Revised (Under Autonomous Status)
9.	To be implemented from Academic Year	2022-23

Date:

Name of BOS Chairperson: ______Signature: _____

RAYAT SHIKSHAN SANSTHA'S KARMAVEER

BHAURAO PATIL COLLEGE, VASHI

(AUTONOMOUS)

Proposed Syllabus

For

S.Y.B.Sc. in Biotechnology

2022-23

Preamble of the Syllabus:

Bachelor of Science (B.Sc.) in Biotechnology is a under graduation course of Department of Biotechnology, KarmaveerBhaurao Patil College Vashi, Navi Mumbai, affiliated to University of Mumbai (MH). Biotechnology is defined as the application of technological principles for the processing or manipulating biological agents to provide goods and services. It derives its strength by harnessing biological processes that sustain life. It is a technology that is more reliable and firm. Biotechnology has the potential to transform the lives of the people by impacting hugely on agriculture, animal husbandry, health and medicines, environment, sustainable development, etc. Biotechnology has accomplished tremendous applications in just a matter of time. People have just started to recognize the endless window of opportunities it has open. Biotechnology has revolutionized the recent advancements in research and development. CBSGS: The Choice Based Semester and Grading System to be implemented through this curriculum would allow students to develop a strong footing in the fundamentals and specialize in the disciplines of his/her liking and abilities.

Program Education Objective (PEO's):

To prepare students to prime for-

- Higher education and research in field of biotechnology and related subjects.
- Careers related broadly to biotechnology and life sciences. Students will embark upon diverse career paths medical coding/pharmaceutical/biotechnology industries, and use their education in a variety of related endeavors.

Course Objective:

- To produce students who understand fundamental principles of basic sciences and apply that understanding to analyze, solve problems and interrelate with current technological developments.
- To promote independent learning andadd rationale thinking, knowledge ability by activity based learning, innovative, teaching learning and evaluation methods.

Name of the Faculty: Science and Technology

Name of the Program: B Sc

Program Outcomes (POs):

PO-1	Disciplinary Knowledge:
	Understand the basic concepts, fundamental principles, theoretical formulations and
	experimental findings and the scientific theories related to Physics, Chemistry,
	Mathematics, Microbiology, Computer Science, Biotechnology, Information
	Technology and its other fields related to the program.
PO-2	Communication Skills: Develop various communication skills such as reading,
	listening and speaking skills to express ideas and views clearly and effectively.
PO-3	Critical Thinking: Propose novel ideas in explaining the scientific data, facts and figures related to science and technology.
PO-4	Analytical Reasoning and Problem Solving: Hypothesize, analyze, formulate and
-	interpret the data systematically and solve theoretical and numerical problems in the
	diverse areas of science and technology.
PO-5	Sense of Inquiry: Curiouslyask relevant questions for better understanding of
	fundamental concepts and principles, scientific theories and applications related to the
	study.
PO-6	Use of Modern Tools: Operate modern tools, equipments, instruments and laboratory
	techniques to perform the experiments and write the programs in different languages
	(sonware).
PO-7	Research Skills: Understand to design collect analyze interpret and evaluate
107	information/data that is relevant to science and technology.
PO-8	Application of Knowledge: Develop scientific outlook and apply the knowledge with
	respect to subject.
PO-9	Ethical Awareness: Imbibe ethical, moral and social values and exercise it in day to day
	life.
PO-10	Teamwork . Work collectively and participate to take initiative for various field-based
10-10	situations related to science, technology and society at large.
PO-11	Environment and Sustainability: Create social awareness about environment and
	develop sustainability for betterment of future.
PO-12	Lifelong Learning: Ability of self-driven to explore, learn and gain knowledge and new
	skills to improve the quality of life and sense of self-worth by paying attention to the ideas
	and goals throughout the life.

Name of the Faculty: Science and Technology

Name of the Program: B.Sc Biotechnology

Program Specific Outcomes (PSOs):

Students will be able to -

PSO-1	Identify, understand and analyze problems and propose valid solutions related to
	field of Biotechnology.
PSO-2	Critically evaluate biotechnological solutions on environment and societies keeping
	in mind the need for sustainable solutions.
PSO-3	Develop a research based ideology and technical skills to build career in
	Biotechnology.

Scheme of examination for Each Semester:

Continuous Internal Evaluation: 40 Marks (Common Test-20 Marks & 20 Marks forAssignment, Projects, Group discussion, Open book test, online test etc.) **Semester End Examination:** 60 Marks will be as follows –

Ι	Theory:		
	Each theory	paper shall be of two and half hour duration.	
	All question	as are compulsory and will have internal options	
	Q-1	From Unit – I (having internal options.) 12 M	
	Q-2	From Unit – II (having internal options.) 12 M	
	Q-3	From Unit – III (having internal options.) 12 M	
	Q-4	From Unit – IV (having internal options.) 12 M	
	Q-5	Questions from all the FOUR Units with equal weightage of	of marks
		allotted to each Unit. 12 M	
II	Practical:	The External examination per practical course will be cond	ucted as per the
		following scheme.	
Sr. No.	Particulars of	of Semester End Practical Examination	Total Marks
Ι	Semester en	d Practical Exam	300

SEMESTER-III

S.Y.B.Sc Biotechnology (Honours) Proposed Semester III Syllabus 2022-23

Semester III

Course code	Course Title	Credits	Course code	Course Title	Credits	Credits Total
		C	ore Courses			
UGBTC301	Cell Biology	4	UGBTCP301	Cell Biology	2	6
UGBTC302	Genetics	4	UGBTCP302	Genetics	2	6
UGBTC303	Molecular Biology	4	UGBTCP303	Molecular Biology	2	6
	Sk	ill Enhand	cement Courses	Any 1)		
UGBTSEC30 1	Food Science & Nutrition	4				4
UGBTSEC30 2	Food Adulteration & Safety	4				4
	G	eneric Ele	ective Courses (A	ny 1)		
UGBTGE301	Research Methodology	4	UGBTGE P-301	Research Methodology	2	6
UGBTGE302	Entrepreneursh ip Development	4	UGBTGE P-302	Entrepreneursh ip Development	2	6

Core Courses

Title of Paper: UGBTC301Cell Biology

Course Outcome	Students will be able to –
	Develop an understanding of the various aspects of cell biology.
	Understand the principles of cellular transport & its role in
	different processes in body.
	Understand the structures of cell skeleton & its role.
Unit 1: Cytoskeleton	Overview of the Major Functions of Cytoskeleton.
	Microtubules: Structure and Composition.
	MAPs: Functions- Role in Mitosis, Structural Support and Cytoskeleton
	Intracellular Motility. Motor Proteins: Kinesins, Dynein; MTOCs.
	Dynamic Properties of Microtubules.
	Microfilaments: Structure Composition Assembly and Disassembly
	Motor Protein: Myosin Muscle Contractility: Sliding Filament Model
	Actin Binding Proteins: Examples of Non-muscular Motility
	Intermediate Filaments: Structure and Composition: Assembly and
	Disassembly: Types and Functions
Unit 2.Cell Membrane	Cell Membrane: Untake of Nutrients by Prokaryotic Cells: Cell
Unit 2. Cen Memorane	Permeability
	Principles of Membrane Transport Transporters and Channels:
	Active Transport Passive Transport:
	Types of Transporters:
	Types of ATP Driven Pumps – Na+ K+ Pump.
	Cell Junctions;
	Cell Adhesion and Extracellular Material Microvilli;
	Tight Junctions, Gap Junctions;
	Cell Coat and Cell Recognition.
	Cellular Interactions.
Unit-3: Cell Division	Introduction, Types, amitosis, Mitosis and cell cycle- Interphase,
	mitotic phase, cytokinesis, The evolution of mitosis, Significance of
	mitosis, meiosis and reproductive cycle- Kinds of meiosis, process of
	meiosis, Significance of meiosis, Spindle dynamics, Cytokinesis,
	comparison between mitosis and meiosis
Unit 4: Cell Signaling	General Principles of cell communication: Introduction, Extracellular signal molecules binding to recentors
transduction	Cell signaling & Signal Forms of intercellular signalling - Autocrine
11 all5uuUl011	Transduction Contact dependent, Paracrine, Synaptic and Endocrine
	Role of gap junction in signaling response to multiple extracellular

signal molecules Morphogens,
Lifetime of intracellular molecule, Role of Nitric oxide and nuclear
receptors Binding reaction and role of Kd,
Extracellular messengers and their receptors, GPCRs RTKs, Second
messengers, Role of Calcium- Introduction, Calcium binding proteins

References:

- 1. The Cell : Molecular Approach, Cooper
- 2. Molecular Biology of Cell, Bruce Alberts
- 3. Cell and Molecular Biology, Karp
- 4. Lehninger's Biochemistry, Nelson Cox
- 5. Biochemistry, Satyanarayana
- 6. Harper's Illustrated Biochemistry, Murray

Proposed Practicals

UGBTCP-301 Cell Biology

1.	Study of endocytosis of salts through semi-permeable membrane
2.	Study of exocytosis of salts through semi-permeable membrane
3.	Purification of proteins by dialysis
4.	Mitosis in onion root tip
5.	Meiosis in Tradescantia flower bud
6.	Effect of Colchicine on Mitosis

Title of Paper: UGBTC302 Genetics

Course Outcome	Students will be able to –
	Understand basic concepts in Mendelian genetics
	Learn various genetic changes in relation to mendelian genetics
	Understand molecular events in cell cycle
	Comment on various genetic abnormalities
	Use manning techniques
Unit – 1: Mendelian	Terminologies, Monohybrid Cross: Principle of Dominance and
Genetics	Segregation. Dihybrid Cross: Principle of Independent Assortment,
	Punnett Square, Problems based on monohybrid, dihybrid cross,
	Extension of Mendelian Genetics, Incomplete Dominance and
	Codominance. Multiple Alleles, Allelic series, Gene Interaction,
	Epistasis Dominant and recessive epistasis, Environmental effect on
	the expression of the Human genes
Unit – 2: Study of	Overview of cell cycle, mitosis and meiosis, Structure and shapes of
Chromosomes	metaphase chromosomes, Histone and non-histone proteins,
	Nucleosome, packaging of DNA into chromosome, Chromosome
	banding. Karyotype analysis (Normal human karyotype), Study of
	genetic abnormalities, Chromosomal aberrations, Turners syndrome,
	Klinefelter syndrome, Down syndrome, Cri-du-chat, Philadelphia
	chromosome, Sex determination, Dosages compensation.
Unit – 3: Genetic	Genetic linkage, Crossing over, Mapping using two point, three point
Mapping in	cross, Tetrad analysis, Numerical problems based on two point and
Eukarvotes	three point cross, Mendel's Principle in Human Genetics – Pedigree
	analysis, characteristics of human autosomal and sexlinked traits,
	pedigree analysis.
Unit 4	Molecular markers: RFLP, RAPD, VNTRs, Fluorescence in-situ
Techniques in	hybridization, Genetic and physical maps, DNA fingerprinting.
Genetics	Autoradiography

References

- 1. Genetics by Peter Russell, 5th Edition.
- 2. iGenetics : A molecular approach by Russell, 3rd Edition
- 3. Genes VIII by Benjamin Lewin
- 4. Concepts of Genetics by William S Klug and Michael R Cummings, 7th Edition

Proposed Practicals

UGBTCP-302 Genetics

1.	Problems on Mendelian genetics - Two point and three point cross
2.	Problems on Pedigree analysis
3.	RFLP
4.	RAPD

Title of Paper: UGBTC303 Molecular Biology & Instrumentation

Course Outcome	Students will be able to –
	Learn structures of nucleic acids
	Findout difference between prokaryotic & eukaryotic DNA
	replication
	Understand control docree of life
	Understand central dogina of me
	Learn concept of genetic code
	Describe translation & post translation events in organism
Unit– 1: Nucleic Acids	Structure of DNA, RNA, DNA Replication in Prokaryotes and
and DNA Replication	Eukaryotes, Semi-conservative DNA replication, DNA Polymerases
	and its role, E.coli Chromosome Replication, Bidirectional Replication
	of Circular DNA molecules. Rolling Circle Replication, DNA
	Replication in Eukaryotes DNA Recombination – Holliday Model for
	Recombination. Types of Mutations, DNA repair
Unit– 2: Transcription	Types of RNA Structural and functional genes. An overview of
Gene expression	transcription process in prokarvotes mRNA synthesis in eukarvotes -
	Promoters and enhancers Initiation of transcription at promoters
	Flongation and termination of PNA chain Post transcriptional
	modifications
Unit 3: Translation	Desinhering genetic code. Characteristics of Genetic code. Webble
Unit – 5: Translation	Hypothesis Translation in Prokaryotes Initiation Elongation and
	Termination Dost translational modifications Protain sorting Dost
	translational modifications
Unit-4	Colorimetry- Principle, Technique and applications,
Instrumentation	Spectrophotometry- Principle, Technique and applications
	Chromatography - 1 hin layer and paper chromatography - Principle,
	Lectrophoresic Dringing Technique and applications of Agerese col
	electrophoresis - Principle, Technique and applications of Agarose get
	electrophotesis and polyacrylaninde get electrophotesis – Native α
	SDS FAUL

References

- 1. Genetics by Peter Russell, 5th Edition
- 2. i Genetics A Molecular Approach by Russell, 3rd Edition
- 3. Genes VIII by Benjamin Lewin
- 4. Molecular Biology of the Gene by J.D. Watson and Baker, 5th Edition
- 5. Molecular Biology by Robert Weaver, 2nd Edition

Proposed Practicals

UGBTCP-303 Molecular Biology

1.	Qualitative test for DNA and RNA
2.	Extraction of genomic DNA from plant source

3.	Measurement of purity and quantity of DNA
4.	Agarose Gel Electrophoresis (Demonstration)
5.	Polyacrylamide gel electrophoresis (Demonstration)

Skill Enhancement Courses

Course Outcome Student will be able to -Learn basic concepts of food] Physicochemical properties of food] Identify daily nutrient requirement of human body] Classify food as per role and functions develop food regime for different age group people learn various food laws Unit-1 Basic Food Science & Basic concept of food, nutrition and nutrients, classification of Nutritional Biochemistry food, and nutrients. Introduction to the biochemistry and the main properties of the principle constituents of foods- lipids, proteins, carbohydrates, vitamins, minerals in nutrition. Physiochemical properties of food Overview of human physiology – body systems, Human gut Unit-2: Human Physiology, Microbiome and Human microbiome, Basis for computing nutrient requirements Body Nutrition – I fluids and water balance Body composition Unit-3:Human Nutrition – II Energy metabolism Regulation of food intake Nutrition during and Nutraceuticals life span Functional foods Overview of nutraceuticals Food laws Unit-4 Healthy Diet, Over Healthy diet, Constituents Over nutrition & health risk nutrition and Malnutrition Malnutrition & health risk Health Risks of Being Underweight Major nutritional problems prevalent in India Nutrition policy and programs Advances in nutritional sciences Geriatrics and pediatric nutrition

Title of Paper: UGBTSEC301: Food Science and Nutrition

References

- 1. Fundamentals of Foods, Nutrition and diet Therapy, 5th Ed. ,Mudambi, SR and Rajagopal MV.
- 2. Food Science, 2nd Ed., Mudambi, S, Rao SM and Rajagopal MV.
- 3. Handbook of Foods and Nutrition, 5th Ed., M Swaminathan.
- 4. Textbook of Human Nutrition, Bamji MS, Rao NP, Reddy V.

Proposed Practicals

14

UGBTSECP-301 Food Science & Nutrition

0001				
1.	Determination of pulse rate in resting condition and after exercise			
2.	Determination of blood pressure by Sphygmomanometer			
3.	Preparation of food from different food groups and their significance in relation to health.			
4.	Preparation of supplementary food for different age group and their nutritional significance.			
5.	Planning and preparation of low cost diet for malnourished child.			
6.	Comparison with norms and interpretation of the nutritional assessment data and its significance, Weight for age, height for age, weight for height, body Mass Index (BMI), Waist - Hip Ratio (WHR), Skin fold thickness.			
7.	Planning and preparation of adequate meal for different age groups with special reference to different physiological conditions: infants, pre-schooler, school children, adolescents, adults, pregnancy, lactation and old age.			
8.	Planning and preparation of normal diets.			
9.	Planning and preparation of Diets for the diseases.			
10	Preparation of dishes suitable for older person- soft, semisolid and easily digestible balanced diet.			

Title of Paper: UGBTSEC302 :Food Adulteration & Safety

Course Outcome	Student will be able to –			
	Learn basic concepts of food			
	Physicochemical properties of food			
	I Identify daily nutrient requirement of human body &			
	deficiency related disorders			
	Learn various aspects of food safety			
Unit 1 Nutritional agreet of	Food Chemistery (Occurrence, chemistery, course, structure, and			
Child Nutritional aspect of	Food Chemistry (Occurrence, chemistry, source, structure, and			
1000	Composition)			
	Carbonydrates- mono, di, oligo, polysaccharides. Example			
	sugar, starch, glycogen, pectin, gums, cellulose, hemicellulose			
	classification of proteins structure of protein			
	classification of proteins, structure of protein			
	• Lipids- properties, functions, sources, classification of fatty			
	actus, trigiycerides, steroid, pilospilonpids Eat aphyble vitaming (A, D, E, K) and water aphyble vitaming			
	• Fat soluble vitamins (A, D, E, K) and water soluble vitamins			
	(B complex, vitamin C): occurrence, chemistry, dany			
	requirements			
	• morganic ions: calcium, phosphorus, iron, soutium,			
	potassium, magnesium and trace elements (dietary sources and			
	Turnes of food Corools Dulses Wheat Dies Corr Ervite			
	Types of food Cereals Pulses wheat Kice Corn Fruits &			
	vegetables which, milk products, weat, fish and poultry Oil			
	seeds, spices balanced diet			
Unit 2: Food Deficiency	Carbohydrata definiency discossos Vatoria Acidenia			
Dint-2: Food Deficiency	Carbonyurate deficiency diseases: Retosis, Acidosis,			
Diseases, Metabolic disorders	Hypoglycemia, Muscle wasting etc. Protein deficiency			

15

and Symptoms	diseases: protein energy malnutrition, Kwashiorkor, Merasmus				
	etc. Lipid deficiency diseases: Alopecia, thrombocytopenia,				
	scaly dermatitis Vitamin (A,B,C,D, E and K) deficiency diseases				
	Mineral deficiency diseases: Na, K, Ca, P, Fe, Mg etc. Metabolic				
	Disoders: Diabetis, Arteriosclerosis, Atherosclerosis				
Unit-3: Food Adulteration	Commonly used adulterants and adverse effects in: Tea leaves,				
	Coriander and cumin powder, Green vegetables, Arhar pulse,				
	Black pepper, Rice, Wheat, Coffee powder, Jaggery, Asafoetida,				
	Gram powder, Processed food, Parched rice, Turmeric powder,				
	Dry red chilli, Sweet potato, Dry turmeric root, Mustard oil,				
	Edible oil, Soda lemonade, Milk, Sweet curd, Rabdi, Ghee				
	etc.				
Unit-4:Food safety	Aspects of food safety- HACCP, GMP, role of FDA, Agmark,				
	ISI, fssai Concept of sanitation and hygienic production of				
	food Food Act, Food rules and Quality control				

References

- 1. Food Chemistry 4thEd, H.D. Belitz
- 2. Harpers Illustrated Biochemistry
- 3. Manual for Detection of the Common Food Adulterants, Edwin M Bruce
- 4. Food Microbiology, Frazier and Westhoff, Tata McGraw Hill Publishers, New Delhi
- 5. Nutrition science, B. Srilaxmi, New age international (P) Ltd
- 6. Quick test for some adulterants in food, Instruction manual- Part II, FSSAI
- 7. Restaurant X Food Safety Training Manual

Proposed Practicals

UGBTSECP-302 Food Adulteration & Safety- Testing of commonly used adulterants in:

Sr. No.	Food Groups	Food Items			
1	Beverages Tea, coffee, soda lemonade etc				
2	Pulses Arhar pulse, moong, chick pea, matkietc				
3	Grains	Rice, wheat, ragi,			
4	Dairy & dairy products	Milk, curd, ghee, butter etc			
5	Sweeteners	Sugar & Jaggery			
6	Spices & condiments	ondiments Black pepper, asafoetida, turmeric, chilli,			
		mustard, coriander powder etc			
7	Fats	Edible oil			

Generic Elective Courses

16

Title of Paper: UGBTGE301 Research Methodology

Course Outcome	 Student will be able to – Understand the principles of research methodology and its significance Understand the methods of data collection, interpretation and report writing Understand the importance of communication and its role in science
Unit 1: Introduction to research methodology	Meaning of research, objectives of research, motivation in research, types of research, research approaches, significance of research, research methods versus methodology, criteria of good research, problems encountered by researchers in India
Unit2:Researchproblem,ResearchdesignandDatacollection	Research problem, selecting the problem, necessity of defining the problem, techniques involved in defining the problem Need for research design, Features of a good design, Primary data, Secondary data, Different methods for the collection of primary and secondary data, other methods of data collection, Case study method
Unit 3: interpretation and Report writing	Interpretation, Technique of interpretation, Precautions in interpretation, Significance of report writing, Different steps in writing report, Layout of the research report, Mechanics in writing report Examples of scientific and unscientific writing, Writing papers, Reviews, Bibliography Plagiarism-Introduction to plagiarism, Examples of plagiarism
Unit 4: Communication in Science	Introduction to communication elements, Scope of communication and communication as part of science Communication elements: verbal and non-verbal communication Principles of effective communication, oral presentations Communication methods in science

References:

- 1. Research Methodology, C.R.Kothari
- 2. Basic Communication Skills for Technology, Andea J. Rutherford

Proposed Practicals

UGBTGEP-301 Research Methodology

1	Assignment on problems faced by researchers in India
2	Survey Based project
3	Review paper writing
4	Research proposal writing

Title of Paper: UGBTGE302 Entrepreneurship Development

Course Outcome	Students will be able to -					
	Develop an understanding of the systematic process					
	Identify the business idea					
	Design strategies for successful implementation of Ideas					
Unit 1: Introduction to	Concept of Entrepreneur: Entrepreneurship: Need and Importance:					
entrepreneurship	Factors Influencing Entrepreneurship: Essentials of a Successful					
development	Entrepreneur					
development						
Unit 2: Entrepreneurship	Competencies Risk taking Determination Initiative problem					
as Innovation and	solving ability, Adaptability to changing technologies					
Problem Solving.	Concept of Social Entrepreneurship					
Entrepreneurship	Feasibility Study and opportunity, Idea generation					
Journey						
Unit 3: Setting up an	Location of Enterprise; Real Estate and Human Resource Planning,					
enterprise and planning	Financial Planning; Role of Government and Financial Institutions					
	in Entrepreneurship Development; Raising Money from Venture					
	Capitalists, Government Grants, Product Selection and Ideas;					
	Project Planning and Formulation; Project Feasibility Assessment;					
	Regulatory Affairs, Corporate Laws, Innovation, IPR generation					
	and Protection, Preparation of a Business Plan, Characteristics and					
	Importance of Planning					
Unit 4: Marketing, Sales,	Marketing Plan for an Entrepreneur; Strategic Alliances,					
Advertising and	Advertising and Sales Promotion; Market Assessment, Need for					
International market	International Market Research, Domestic vs. International Market					
research	Research, Cost and Methodology of Market Research, Desk and Field					
	Research					

References:

- 1. Introduction to Entrepreneurship, National Open University of Nigeria
- 2. Entrepreneurial Development, M. C. Garg
- 3. Entrepreneurship Development and management, Dr. A. K. Singh
- 4. Entrepreneurship Development, Khudra
- 5. Entrepreneurship Development, Jayshree Suresh

Proposed Practicals

UGBTGEP-302 Entrepreneurship Development

1	Assignment based on steps of Entrepreneurship Development
2	Types of advertisement
3	Different Marketing strategies for product selling
4	Success Story of any one entrepreneur
5.	Business proposal writing

SEMESTER-IV

S.Y. B. Sc Biotechnology (Honours) Proposed Semester IV Syllabus 2022-23

Semester IV

Course code	Course Title	Credits	Course code	Course Title	Credit	Credit
					S	s Total
		Co	ore Courses			
				Practicals of		
UGBTC401	Immunology	4	UGBTCP401	Immunology	2	6
				Practicals of		
UGBTC402	Genetic	4	UGBTCP402	Genetic	2	6
	Engineering			Engineering		
				Practicals of		
UGBTC403	Medical	4	UGBTCP403	Medical	2	6
	Microbiology			Microbiology		
	Ski	ill Enhance	ement Courses(A	Any 1)		
UGBTSEC40	Biofertilizer	4				4
1	Production					
UGBTSEC40	Mushroom	4				4
2	Cultivation					
	G	eneric Elec	tive Courses (A	ny 1)		
UGBTGE401		4	UGBTGE	Practicals of	2	6
	Evolution &		P-401	Evolution and		
	Ecology			Ecology		
UGBTGE402		4	UGBTGE	Practicals of	2	6
	Bioethics and		P-402	Bioethics and		
	Biosafety			Biosafety		

Core Courses

Title of Paper: UGBTC401 Immunology

Course Outcome	 Students will be able to – Describe the interaction between antigens and antibodies Understand significances of various methods of antigen/antibody detection and quantification Understand the receptors involved in signal transduction to elicit an immune response Understand the negative effects of overexpression of immune response
Unit 1: Introduction to Immunology and Effectors of Immune Response	Overview of Immune system. Innate and Adaptive Immunity. Hematopoiesis Cells of the Immune System: Lymphoid Cells [B Lymphocytes (B Cells),T Lymphocytes (T Cells)], Natural Killer Cells, Mononuclear Phagocytes, Granulolytic Cells, Mast Cells, Dendritic Cells, Follicular Dendritic Cells. Organs of the Immune System: Primary Lymphoid Organs, Secondary Lymphoid Organs
Unit 2: Antigens and Antibodies	Antigens: Immunogenicity Versus Antigenicity, Epitopes, Types of Antigens, Haptens, Adjuvants Antibodies: Basic Structure of Antibodies, Antibody Classes and Biological Activity, Antigenic Determinants on Immunoglobulins Monoclonal Antibodies, Hybridoma Technology
Unit 3: Antigen – Antibody Interaction	Precipitation reaction, Precipitin curve, Immunodiffusion reactions – single/ double/ radial, immunoelectrophoresis Agglutination reactions, Radioimmunoassay ELISA, ELISPOT, Western blotting, CFT, Immunoprecipitations, Immunofluorescence, Chemiluminiscence, Flow cytometry
Unit 4: Vaccines	Active and Passive Immunization Attenuated Vaccines, Inactivated or "Killed" Vaccines, Subunit Vaccines, Peptide Vaccines, Vector Vaccines, Conjugate Vaccines, Genetic Immunization, Anti Covid-19 vaccines Role of Biotechnology in Vaccine Production.

References:

- 1. Immunology, Barbara A. Osborne and Janis Kuby
- 2. Textbook of Microbiology, Ananthnarayan
- 3. Immunology, C.V.Rao
- 4. New Generation Vaccines, 4 th ed., Myrone M. Levine
- 5. Molecular Biotechnology, Glick and Pasterneck

Proposed Practicals

UGBTCP-401 Immunology

1.	Determination of relationship between 2 given antigen by Ouchterlony's method			
2.	Determination of the concentration of antigen using Radial immunodiffusion technique			
3.	To determine the presence of antigen by sandwich ELISA method			
4.	To determine the presence of antigen by DOT ELISA method			
5.	To determine the RA antigen			
6.	Hemagglutination			

Title of Paper: UGBTC402 Genetic Engineering

Course Outcome	Students will be able to –
	Learn enzymes used in genetic engineering
	Understand properties of vector
	Learn various concepts of recombinant DNA technology
	Describe techniques in transgenic animal and plants
Unit 1: Enzymes in	Sources, Mode of Action, Applications of Nucleases - Endo, exo,
Gene Cloning	DNase -I, RNase, S1 Nuclease, Mung bean nuclease Restriction
	endonucleases - types, nomenclature, target sites, nature of cut ends,
	host control restriction and modification, star activity, isoschizomeres,
	neoschizomeres, examples with restriction sites. Ligases, DNA
	polymerase, Reverse trancriptase, Alkaline phosphatases,
	Polynucleotide kinase, Terminal transferase
Unit 2: Vectors	Properties of ideal vector, copy number Plasmid cloning vector -
	pBR322, pUC19 Phage vectors – Lambda phage vectors, M13
	Cosminds, Shuttle vectors, Expression vectors pET vectors YAC,
	BAC Plant vectors – Ti Plasmid derived vector, Plant viruses derived
	vectors
Unit 3: Techniques in	Recombinant DNA technology, Detection of clones, Electrophoresis,
Genetic Engineering	Construction and screening of gDNA and cDNA libraries, Restriction
	digestion, Southern Blot analysis, Northern Blot analysis, Western blot
	analysis, DNA sequencing, Polymerase chain reaction and variations,
	Chromosome walking, jumping
Unit 4: Genetic	Transgenic plants : Physical methods of transferring genes to plants:
Engineering in Plants	electroporation, microprojectile bombardment, liposome mediated,
and Animals	protoplast fusion; Chemical Methods for transferring genes to
	plants : Calcium phosphate, DEAE dextran
	method DNA microiniaction ES method: genetic manipulation with
	cre-loxP. Vectors for animal cells. Transgenic animals recombination
	system: Cloning live stock by nuclear transfer: Transgenic Livestock
	Synthetic biology- improvement of seed quality proteins and
	transgenic fish

References

- 1. Biotechnology, S.S. Purohit
- 2. Principles of Gene Manipulations, Primrose
- 3. Gene Cloning, T.A.Brown
- 4. The Dictionary of Cell and Molecular Biology, 4th ed., J.M. Lackie

Proposed Practicals

UGBTCP-402 Genetic Engineering

1	Isolation of genomic DNA from E.coli
2	Isolation of plasmid DNA
3	Separation of DNA by AGE
4	Study of restriction digestion
5	To amplify the gene using PCR
6	To separate protein samples using SDS PAGE
7	Detection of specific protein by western blotting technique.

Title of Paper: UGBTC403 Medical Microbiology

Course Outcome	Students will be able to –
	Learn various concepts in medical microbiology
	List the factors playing a role in causing a disease.
	Discuss the various aspects of systemic infections including causative
	agents, symptoms and prophylaxis
	Gain the technical capability of handling, isolating and identifying
	various bacteria.
Unit 1:	Normal Flora- Origin, Gnotobiotic life, rearing germ free animals
Infectious Diseases	Etiology of infectious disease- Koch's Postulates. Classifying infectious diseases (Types of infection). Signs and Symptoms Stages of disease
	Eactors In The Development Of Infection, portal of entry adhesion
	invasion of host (antiphagocytic factors expensions) portal
	of exit Origin Of Pathogens- Reservoirs (human animal and non-living)
	Transmission Of Disease- Contact, Vehicle and vector transmission
	Nosocomial Infections Epidemiology of infectious diseases
Unit 2: Medical	Skin : S aureus S pyogenes Tinea Infections Respiratory Tract
Microbiology	Infections · M tuberculosis (Characteristics Transmission Course of
Causative Organisms-	Infection Lab Diagnosis Management of TB. Prevention and Control
I	Immuno and Chemoprophylaxis, DOTS and MDR), S. pneumoniae.
	SARS CoV2 (viral genome, Transmission of COVID 19,
	Pathogenesis, Lab diagnosis, Treatment, Prophylaxis and preventive
	measures- social distancing) Urinary Tract Infections : E.coli :
	Characteristics, Virulence, Clinical disease, Proteus spp.
Unit 3: Medical	GI Tract Infections : E.coli: enteropathogenic strains of E. coli
Microbiology	Salmonella and Shigella spps. (Characteristics, Virulence-
Causative Organisms-	Pathogenesis and Immunity, Clinical Disease, Carriers Lab
II	Diagnosis, Prophylaxis and Treatment). Sexually Transmitted
	Diseases : Syphilis and Gonorrhoea. Nosocomial Infections : Ps.
	aeruginosa Parasitic Blood infection-Malarial parasites: Life Cycle,
	Diagnosis and Treatment Medical mycology – Tinea Infections
Unit 4:	Chemotherapeutic drugs, Discovery and Design of antimicrobial
Chemotherapeutic	agents, Classification of Antibacterial agents, selective toxicity, MIC,
Agents	NILC, INNIDITION OF CEIL WALL Synthesis (Mode of action for):Beta
	lactani antibiotics: Peniciliin, Cephalosporins; Glycopeptides:
	vancomychi, Polypeptide: Dachrich, injury to plasma memorane:
	Tetracyclines Chloramphenicol Macrolidas Erythromycin Inhibition
	of Nucleic acid synthesis: Ouinolones Rifamnicin Metronidazole
	Antimetabolites: Sulphonamides Trimethonrim drug Resistance:
	Mechanism Origin and transmission of drug resistance. Use and
	misuse of antimicrobial agents.

References:

- 1. Tetbook of Microbiology, Anantnarayan & paniker, 10th Edition
- 2. Microbiology, An Introduction, Tortora, Funke, Case, 10th Edition
- 3. Medical Microbiology, Murray, Rosenthal, Pfaller, 7th edition
- 4. Microbiology, Prescott, Harley and Klein, 5th edition

Proposed Practicals

UGBTCP-403 Medical Microbiology

1.	Determination of MIC & MLC of antibiotic
2.	Determination of AST & Synergy
3.	Identification of S.aureus-Isolation, Catalase, Coagulase Test.
4.	Identification of <i>E.coli</i> -Isolation, Sugar Fermentations, IMViC.
5.	Identification of Salmonella- Isolation, Sugar Fermentations, TSI Slant
6.	Identification of Shigella- Isolation, Sugar Fermentations, TSI Slant
7.	Identification of Proteus- Isolation, Sugar Fermentations, IMViC
8.	Identification of Pseudomonas - Isolation, Urease test, Oxidase Test, TSI Slant

Skill Enhancement Courses

Course Outcome	Student will be able to –
	Learn importance of biofertilizer
	Understand classification of biofertilizer
	• Properties of biofertilizers
	• Discuss applications of biofertilizers
Unit-1:	Introduction, History and concept of Bio fertilizers, status scope
Introduction	and importance of Bio fertilizers, Classification of Bio
	fertilizers, Nitrogen fixation.
Unit-2: Types of	Structure and characteristic features of bacterial Bio fertilizers-
Biofertiliozers	Azospirillum, Azotobacter, Bacillus, Pseudomonas, Rhizobium
	and Frankia; Cynobacterial biofertilizers- Anabaena, Nostoc,
	Hapalosiphon and fungal biofertilizers- AM mycorrhiza and
	ectomycorhiza
Unit-3: Production	Strain selection, sterilization, growth and fermentation,
technology	equipment, mass production of carrier based and liquid bio
	fertiizers. FCO specifications and quality control of bio
	fertilizers.
Unit-4:Applications	Application technology for seeds, seedlings, tubers, sets etc.
	Biofertilizers -Storage, shelf life, quality control and
	marketing. Factors influencing the efficacy of bio fertilizers.

Title of Paper: UGBTSEC401: Biofertilizer Production

References

- Textbook of Biotechnology, R C Dubey
 Biofertilizers in agriculture and Forestry, N. S. Subbarao

Proposed Practicals

UGBTSECP-401 Biofertilizer production

1	Isolation of Rhizobium from leguminous plants
2	Isolation of Azatobacter
3	Isolation of phosphate solubilizing bacteria
4	Immobilization Technique – Preparation of Agrobeads
5	Consortium Preparation and checking its efficiency

Title of Paper: UGBTSEC402 : Mushroom Cultivation

Course Outcome	Student will be able to –
	 Learn aspects in mushroom cultivation
	 Understand classification of mushroom
	• Learn properties of various mushroom
	• Design model strategy for mushroom cultivation
Unit-1 : Introduction	Introduction to mushrooms
	Mushrooms -Taxonomical rank -History and Scope of
	mushroom cultivation - Edible and Poisonous Mushrooms-
	Vegetative characters
Unit-2: Types of Mushrooms	Common edible mushrooms, Button mushroom (Agaricusbi
	sporus), Milky mushroom (Calocybe indica), Oyster
	mushroom (Pleuro tussajorcaju) and paddy straw mushroom
	(Volvariella volvcea).
Unit-3: Mushroom	Principles of mushroom cultivation Structure and construction
Cultivation	of mushroom house. Sterilization of substrates. Spawn
	production - culture media preparation- production of pure
	culture, mother spawn, and multiplication of spawn. Composting
	technology, mushroom bed preparation. Spawning, spawn
	running, harvesting. Cultivation of oyster and paddy straw
	mushroom. Problems in cultivation - diseases, pests and
	nematodes, weed moulds and their management strategies
Unit-4: Health Benefits of	Health benefits of mushrooms Nutritional and medicinal values
Mushrooms	of mushrooms. Therapeutic aspects- antitumor effect, Post
	harvest technology, Preservation of mushrooms - freezing, dry
	freezing, drying, canning, quality assurance and
	entrepreneurship. Value added products of mushrooms.

References

- 1. Industrial Microbiology, Prescott & Dunn
- 2. Marimuthu, T. et al. (1991). Oster Mushroom. Department of Plant Pathology. Tamil Nadu Agricultural University, Coimbatore.
- 3. Nita Bhal. (2000). Handbook on Mushrooms. 2nd ed. Vol. I and II. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi
- 4. Pandey R.K, S. K Ghosh, 1996. A Hand Book on Mushroom Cultivation. Emkey Publications.
- 5. Pathak, V. N. and Yadav, N. (1998). Mushroom Production and Processing Technology. Agrobios, Jodhpur.
- 6. Tewari Pankaj Kapoor, S. C. (1988). Mushroom Cultivation. Mittal Publication, New Delhi.
- 7. Tripathi, D.P. (2005) Mushroom Cultivation, Oxford & IBH Publishing Co. PVT.LTD, New Delhi.

8. V.N. Pathak, Nagendra Yadav and Maneesha Gaur, Mushroom Production and Processing Technology/ Vedams Ebooks Pvt Ltd., New Delhi (2000)

Proposed Practicals

UGBTSECP-402 Mushroom Cultivation

1	Media preparation
2	Preparation of Spawn
3	Cultivation of oyster mushroom
4	Assignment on Medicinal value of Mushrooms

Generic Elective Courses

Title of Paper: UGBTGE401 Evolution and Ecology

Course	Student will be able to –	
Outcome	• Learn aspects various aspects in Evolution and related theories	
	Understand concepts of speciation	
	Learn properties of Ecosystem	
	• Design model for varied interactions	
	• Understand the concept of nutrient recycling	
Unit 1:	Origin of Life; Theories of Evolution, Lamarckism and Darwinism;	
Evolution	Evidences of Evolution; Natural Selection, Evidences, Modes, Sexual selection;	
	Pattern of evolution, Convergent, Coevolution, Parallel, Adaptive radiation,	
	Red queen hypothesis	
Unit 2: Species	Species Species concept; reproductive isolations, Haldane's rule	
and speciation	Speciation, Types, Evolutionary forces involved in speciation, Pattern of	
_	evolutionary changes; Nature of evolution	
	Molecular Phylogeny, Molecular clock, Phylogenetic tree, classification	
Unit 3:	Ecology and Biogeography.	
Ecosystem and	Ecosystems, Definition and Components, Structure and Function of	
Interactions	Ecosystems.	
	Aquatic and Terrestrial Ecosystems, Biotic and Abiotic Factors, Trophic Levels,	
	Food Chain and Food Web, Ecological Pyramids (Energy, Biomass and	
	Number) Interactions, Commensalism, Mutualism, Predation and Antibiosis,	
	Parasitism	

Unit 4:	Nutrient Cycle and Biogeochemical Cycles: Water, Carbon, Oxygen,	
Biogeochemical	Nitrogen, Sulphur & Phosphorus, Biological control of chemical factors in	
Cycles	environment, Production and decomposition in nature, Biodistribution of	
v	elements, Ozone layer.	

References:

- Molecular Cell Biology. 7th Edition, (2012) Lodish H., Berk A, Kaiser C., K Reiger M., Bretscher A., Ploegh H., Angelika Amon A., Matthew P. Scott M.P., W.H. Freemanand Co., USA
- 2. Molecular Biology of the Cell, 5th Edition (2007) Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. Garland Science, USA
- 3. Cell Biology, 6th edition, (2010) Gerald Karp. John Wiley & Sons., USA
- 4. The Cell: A Molecular Approach, 6th edition (2013), Geoffrey M. Cooper, Robert E. Hausman, Sinauer Associates, Inc. USA
- 5. Developmental Biology; Scott Gilbert; 9th Edition

Proposed Practicals

UGBTGEP-401 Ecology and Ecosystem

1	Study of Interactions Commensalism, Mutualism, Predation and Antibiosis, Parasitism
2	Setting up of Winogradsky column and it's study
3	Study of Nutrient Cycle and Biogeochemical Cycles
4	Problems based on phylogenetic tree
5	Project based on evolutionary studies

Title of Paper: UGBTGE402 Bioethics and Biosafety

Course Outcome	 Student will be able to – Learn the concept of Biosafety cabinet Understand the concept of bioethics Design work practices in biosafety cabinet Learn ethical issues in rDNA technology Learn risk assessment and management aspects in bioethics
Unit 1: Introduction to Biosafety	Introduction, Biological Risk Assessment, Hazardous Characteristics of Agent, Genetically modified agent hazards, Cell cultures, Hazardous Characteristics of Laboratory Procedures, Potential Hazards Associated with Work Practices, Safety Equipment and

	Facility Safeguards Pathogenic risk and management
Unit 2: Biosafety	Biosafety cabinents, Primary containments for biohazards, Biosafety
Levels & Risk	levels, GMOs, LMOs and their environmental impact, Roles of
management	institutional biosafety committee, Review committee for genetic
	manipulation (RCGM), Genetic engineering appraisal committee
	(GEAC) for GMO applications in food and agriculture risk analysis
	assessment and management
Unit 3: Introduction	Introduction to bioethics, Bioethical issues related to health care,
to Bioethics	medicine, food and agriculture genetic engineering
	Human genome project and genetic testing environmental problems,
	Ethical implications on biotechnological products and techniques,
	Social and ethical implications of biological weapons
Unit 4: Management	Bioethics and assisted reproductive technology
Aspects	Management aspects of biotechnology and genetic engineering.
	Recommended biosafety levels for infectious agents and infected
	animals
	Ethical issues related to rDNA technology, GM crops, Gene therapy and
	Stem cell research

References:

- 1. Pharmaceutical Microbiology Hugo, W.B, Russell, A.D 6th edition Oxford Black Scientific Publishers.
- 2. Biosafety in Microbiological and Biomedical Laboratories 5th Edition, L. CaseyChosewood Deborah E. Wilson U.S. Department of Health and Human ServicesCenters for Disease Control and Prevention National Institutes of Health.
- 3. Molecular Biotechnology –Principles and Applications of Recombinant DNA Glick, B.R, Pasternak, J.J Patten, C.L 3rd edition ASM press

Proposed Practicals

UGBTGEP-402 Bioethics and Biosafety

1	Assignment on different Biosafety levels
2	Assignment on ethical issues in assisted reproductive technology
3	Assignment on ethical issues related to GM crops