RayatShikshanSanstha's

KarmaveerBhauraoPatil College, Vashi

(AUTONOMOUS)

Syllabus for Approval

Sr. No.	Heading	Particulars
1.	Title of the Course	F.Y.B.Sc. in Biotechnology
2.	Eligibility for Admission	H.S.C.
3.	Passing Marks	40%
4.	Ordinances/ Regulation	
5.	No. of Years/ Semester	1 Year / 2 Semesters
6.	Level	Undergraduate (UG)
7.	Pattern	Semester
8.	Status	Revised (As Per NEP2020)
9.	To be implemented from Academic Year	2023-24

Date:		
Name of ROS Chairnerson:	Signature:	

RAYAT SHIKSHAN SANSTHA'S KARMAVEER BHAURAO PATIL COLLEGE, VASHI (AUTONOMOUS)

Proposed Syllabus

For

F.Y.B.Sc. in Biotechnology

2023-24

Preamble of the Syllabus:

Bachelor of Science (B.Sc.) in Biotechnology is a under graduation course of Department of Biotechnology, KarmaveerBhauraoPatil College Vashi, Navi Mumbai, affiliated to University of Mumbai (MH). Biotechnology is defined as the application of technological principles for the processing or manipulating biological agents to provide goods and services. It derives its strength by harnessing biological processes that sustain life. It is a technology that is more reliable and firm. Biotechnology has the potential to transform the lives of the people by impacting hugely on agriculture, animal husbandry, health and medicines, environment, sustainable development, etc. Biotechnology has accomplished tremendous applications in just a matter of time. People have just started to recognize the endless window of opportunities it has open. Biotechnology has revolutionized the recent advancements in research and development. CBSGS: The Choice Based Semester and Grading System to be implemented through this curriculum, would allow students to develop a strong footing in the fundamentals and specialize in the disciplines of his/her liking and abilities.

Program Education Objective (PEO's):

To prepare students to prime for-

- Higher education and research in field of biotechnology and related subjects.
- Careers related broadly to biotechnology and life sciences. Students will embark upon diverse career paths medical coding/pharmaceutical/biotechnology industries, and use their education in a variety of related endeavors.

Course Objective:

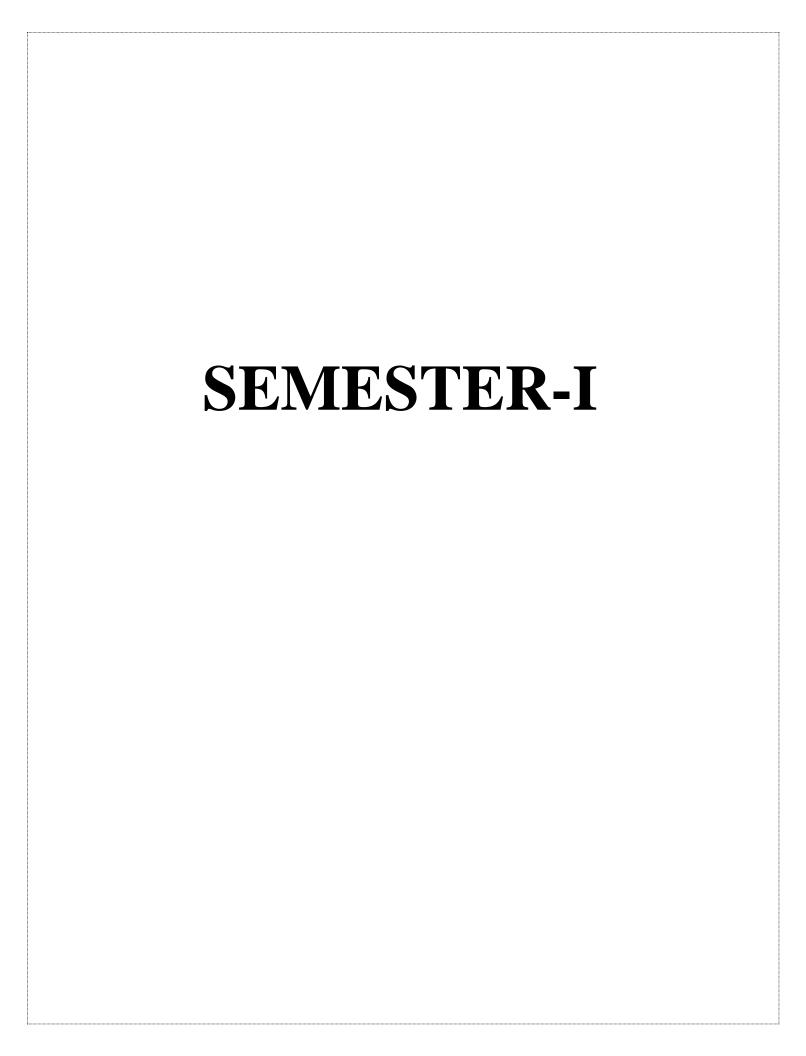
- To produce students who understand fundamental principles of basic sciences and apply that understanding to analyze, solve problems and interrelate with current technological developments.
- To promote independent learningandadd rationale thinking, knowledge ability by activity based learning, innovative, teaching learning and evaluation methods.

Name of the Faculty: Science and Technology

Name of the Program: BSc

Program Outcomes (POs):

PO-1	Disciplinary Knowledge: Understand the basic concepts, fundamental principles, theoretical formulations and experimental findings and the scientific theories related to Physics, Chemistry, Mathematics, Microbiology, Computer Science, Biotechnology, Information Technology and its other fields related to the	
	program.	
PO-2	Communication Skills: Develop various communication skills such as reading, listening and speaking skills to express ideas and views clearly and effectively.	
PO-3	Critical Thinking: Propose novel ideas in explaining the scientific data, facts and figures related to science and technology.	
PO-4	Analytical Reasoning and Problem Solving: Hypothesize, analyze, formulate and interpret the data systematically and solve theoretical and numerical problems in the diverse areas of science and technology.	
PO-5	Sense of Inquiry: Curiouslyask relevant questions for better understanding of fundamental concepts and principles, scientific theories and applications related to the study.	
PO-6	Use of Modern Tools: Operate modern tools, equipments, instruments and laboratory techniques to perform the experiments and write the programs in different languages (software).	
PO-7	Research Skills: Understand to design, collect, analyze, interpret and evaluate information/data that is relevant to science and technology.	
PO-8	Application of Knowledge: Develop scientific outlook and apply the knowledge with respect to subject.	
PO-9	Ethical Awareness: Imbibe ethical, moral and social values and exercise it in day to day life.	
PO-10	Teamwork: Work collectively and participate to take initiative for various field-based situations related to science, technology and society at large.	
PO-11	Environment and Sustainability: Create social awareness about environment and develop sustainability for betterment of future.	
PO-12	Lifelong Learning: Ability of self-driven to explore, learn and gain knowledge and new skills to improve the quality of life and sense of self-worth by paying attention to the ideas and goals throughout the life.	


Name of the Faculty: Science and Technology

Name of the Program: Certificate Course in B. Sc Biotechnology

Program Specific Outcomes (PSOs):

Students will be able to –

PSO-1	Identify, understand and analyze problems and propose valid solutions related to			
	field of Biotechnology.			
PSO-2	Critically evaluate biotechnological solutions on environment and societies keeping			
	in mind the need for sustainable solutions.			
PSO-3	Develop a research based ideology and technical skills to build career in			
	Biotechnology.			

F.Y. B. Sc Biotechnology (Honors) Proposed Semester I Plan 2023-24

Sem	Major	Minor	OE	VSC, SEC	AEC,	OJT,	Cum
				(VSEC)	VEC,	FP,	Cr./
					IKS	CEP,	Sem
						CC,	
						RP	
I	Fundamentals of	Fundamentals of	Beverage	VSC-	AEC-	CC-2	24
	Biotechnology	Biotechnology	technology	Biomolecules	2,		
	(4 Credits)	(4 Credits)	(4 Credits)	(BT103)	VEC-		
	, , ,	,	, , ,	, ,	2,		
	(BT101)	(BT101)	(BT102)	SEC- Green	IKS-2		
	, ,	, , ,	, , ,	House			
				Technology			
				(BT104)			
				, , ,			
				(2 Credits each)			
II	Basics of Cell	Basics of Cell	Food	VSC-Biofuel	AEC-	CC-2	24
	Biology &	Biology & Genetics	Adulteration	Production	2,		
	Genetics	(4 Credits)	& Safety	(BT203)	VEC-		
	(4 Credits)		(4 Credits)		2,		
				SEC-Basics of	IKS-2		
	(BT201)	(BT201)		Bioinformatics			
	, ,	, ,		(BT204)			
			(BT202)	, ,			
			ĺ	(2 Credits each)			
Cum	4+4	4+4	4+4	4+4	4+4+4	4	48
Cr.							

F.Y.B.Sc Biotechnology (Honours) Proposed Semester I Syllabus 2023-24 Major / Minor

Paper Name:Fundamentals of Biotechnology

Paper Code: BT101 No. of credits: 4

No. of credits: 4		
Course Outcome	Student will be able to –	No. of lectures
	 Understand fundamental vocabulary and 	
	Concepts of Biotechnology	
	Differentiate between Traditional Biotechnology	
	and Modern Biotechnology	
	• State various branches and applications of	
	Biotechnology	
	Understand the concept of cell culture and	
	organization of tissue culture laboratories	
	• Understand the principles of plant and animal	
	tissue culture	
Unit 1	What is Biotechnology? Definition of Biotechnology,	
Introduction and	Traditional and Modern Biotechnology, Branches of	4 7 7
Scope of	Biotechnology- Pharmaceutical Biotechnology, Plant,	15 Lectures
Biotechnology	Animal Biotechnology, Marine Biotechnology,	
	Industrial Biotechnology, Environmental	
	Biotechnology.	
	Biotechnology Research in India, Biotechnology in	
	context of developing world, Public perception of	
	Biotechnology, Ethics in Biotechnology and IPR.	
Unit 2	In agriculture: Genetically modified plants and animals	
Applications of		
Biotechnology	livestock improvements, Modifications in plant quality-	15 Lectures
	Golden rice,	
	Insect resistance- Bt crops, Molecular Farming, Plant	
	based vaccines, Biopesticides, Biofertiliers	
	In industry: Enzymes, Fermentation based products,	
	Bio-fuel, Bio-energy	
	In healthcare: Vaccines, Monoclonal antibodies, Stem	
	cell research, Gene therapy	
	In environment: GMO, Bioremediation and Biosensors	
Unit-3	Cell theory, Definition of cell differentiation, de-	
Basics of Animal	differentiation, re-differentiation and regeneration	
and Plant Tissue	PTC: Cellular totipotency, Concept of cell culture,	15 Lectures
Culture	Organization of plant tissue culture laboratory equipments	
	and general practice, Aseptic techniques.	

Culture medium: Preparation and Media sterilization, Nutritional requirements of the explants, PGR's and their in vitro roles Callus culture technique: Introduction, Initiation and growth. ATC: Introduction, Properties of normal cells,	
Morphology of cells in culture Cell culture techniques, Equipment and sterilization methodology, Nutritional and physiological requirements: Growth factors and growth parameters, Serum free media	

Fundamentals of Biotechnology-References

- 1. Advanced Biotechnology, R.C. Dubey
- 2. Biotechnology, B.D. Singh
- 3. Biotechnology, S.N. Jogdand
- 4. Text book of Biotechnology, R.C. Dubey
- 5. Text of Biotechnology, S. Chand
- 6. Animal cell culture, SudhaGangal
- 7. Plant tissue culture, M.K.Razdan

Laboratory Sessions

Fundamentals of Biotechnology

1	Assignment- Study of any branch of Biotechnology and its applications
2	Assignment- Biotech company review
3	Immobilization of enzymes
4.	Study of instruments and equipment's used in ATC and PTC
5.	Trypsinisation of animal tissue.
6.	Viable count using trypan blue
7.	PTC media preparation
8.	Surface sterilization of different explants
9.	Encapsulation of germinating seeds

Open Elective (OE)

Paper Name: Beverage Technology

Paper Code: BT102 No. of credits: 4

Course	Student will be able to –	No. of lectures
Outcome Unit 1 Introduction	 Understand the various concepts and principles of beverage technology. List the quality control steps in beverage production Understand the industrial production of different types of beverages Introduction and History of beverage technology. 	15 lectures
and Overview of Beverage Technology	 Type of beverages: fruit & vegetable juices, fermented and non-fermented beverages, synthetic beverages, carbonated and non-carbonated beverages. Water for beverages: Types of water required for beverages, treatment of water. Additives for beverages: Natural and synthetic sweeteners and colours, acids, emulsifiers, preservatives, flavours and flavour enhancers. Quality control of beverage: Quality standards for beverages, chemical, microbial and sensory evaluation, product shelf life. 	
Unit 2 Industrial Production of Beverages	 Non-carbonated and carbonated synthetic beverages:-Ingredients, source of carbon dioxide, chemical and physical properties of carbon dioxide, carbonating process, packaging of carbonating beverages. Alcoholic Beverages: -Non-Distilled Beverages: Beer and Wine; Distilled Beverages: Vodka and Whisky. 	15 lectures
Unit 3 Processing and Preservation.	Overview of principles and preservation methods of fruits and vegetables; Fruit and Vegetable Beverages:- Juice extraction, clarification, preservation, packaging,	15 lectures

concentration and drying Canning:	
Definition, processing steps, and	
equipment, cans and containers, quality	
assurance and defects in canned	
products; FSSAI specifications and	
preparation and preservation of juices,	
squashes, syrups, sherbets. Preparation,	
and preservation ,machines used for	
manufacture of crystallized fruits and	
preserves, jam, jelly and candies.	
Preparation, preservation and machines	
for manufacture of chutney, pickles,	
sauce, puree, paste, ketchup.	

Beverage Technology - References

- 1. Principles of fermentation technology- Allen WhittkarAne's student edition.
- 2. Industrial Microbiology by Prescott and Dunn, fourth edition.
- 3. Ashurst, P.R, Chemistry and technology of Soft drink and fruit juices, 2ndedition, Blackwell Publishing Ltd. 2005.
- 4. Steen, D.P and Ashurst, P.R, Carbonated soft drinks Formulation and manufacture, Blackwell Publishing Ltd. 2000.
- 5. ShankunthalaManay, N. and Shadakdharaswamy, M, Foods Facts and Principles, New Age International Pvt. Ltd, 3rd revised edition 2000.
- 6. Handbook of food and beverage fermentation technology by Y.H. Hui 2004.

Laboratory Sessions

Beverage Technology (UGBTGEP101)

1	Study of different types of fermenters and their applications.
2	Sterilization of fermenter using moist heat.
3	Study of growth characteristics (growth curve) of Saccharomyces cerevisae.
4	Production of wine by traditional method and its sensory evaluation.
5	Estimation of alcohol by dichromate method.
6	Preparation of jam from selected fruits and canning of fruits like mango, guava
7	Visit to beverage plant.

Vocational Skill Course (VSC)

Paper Name: Biomolecules

Paper Code: BT103

No. of credits: 2		
Course Outcome	 Student will be able to – Compare and contrast different Biomolecules Discriminate structural and functional characteristics of various Biomolecules Illustrate the structure and Characterization of Biomolecules 	No. of lectures
Unit 1 Carbohydrates and Lipids	Carbohydrates: Introduction, Biological importance, Definition, Classification, (Glyceraldehydes, Simple Aldoses, Simple Ketoses, D-glucose, Conformation of D-glucose) Monosaccharides other than glucose, glyosidic bond, disaccharides, polysaccharides (starch, glycogen), peptidoglycan, proteoglycan matrix. Lipids: Introduction, classes, fatty acids [physical and chemical properties] simple lipids, complex lipids. Steroid lipids, structural, functional storage lipids. Saturated and unsaturated fatty acids, uses as-signal, cofactor, pigment.	15 Lectures
Unit 2 Amino Acids & Proteins	Amino Acids: Classification, Structure and properties of amino acids, Titration curve, Acid- Base behavior, Zwitter ions, isoelectric pH, reactions Proteins: Structure-peptide bond, -S-S (inter & intra), Primary structure, Secondary structure, Tertiary structure - Interaction (Myoglobin, Hemoglobin structure as an example), Quaternary structure - Interaction in peptide Hb, Protein sequencing — Sanger's reaction, Edman's method, Sorenson's titration , Denaturation of proteins, coagulation of proteins Different types of Proteins in the living system Enzymes:Definition (zymogens, co enzymes, co factors, apoenzymes, isoenzymes) Classification, nomenclature, chemical nature, properties of enzymes, Mechanism of enzyme action, active site, enzyme specificity, Effect of pH, temperature, substrate concentration and inhibitor on enzyme activity.	15 Lectures

Fundamentals of Biotechnology-References

- Biochemistry, Satyanarayana, 2nd edition, Books and Allied Pvt Ltd.
 Lehninger, Principles of Biochemistry. 5th Edition (2008), Nelson and Cox
 Fundamentals of Biochemistry. 3rd Edition (2008), Donald Voet& Judith Voet
 Biochemistry, 7th Edition, (2012), Jeremy Berg, LubertStrye

Laboratory Sessions

Fundamentals of Biotechnology

1	Qualitative test for carbohydrates- Molisch, Benedicts, Iodine
2	Qualitative test for lipids- Solubility test, Grease test, Saponification, Hubl's iodine test,
	Salkowski's test.
3	Qualitative test for proteins - Biuret, Heat coagulation, Full and half saturation test, Ninhydrin
	test, Xanthoproteic test
4	Estimation of glucose by DNSA method
5	Estimation of protein by Biuret method
6	Effect of Substrate, enzyme concentration, temperature, pH and inhibitors on enzyme activity

Skill enhancement course (SEC)

Paper Name: Green house technology

Paper Code: BT104 No. of credits: 2

Course	Student will be able to –	No. of lectures
Outcome	 Understand the concept of Greenhouse, Protected Agricultural Systems, Precision Agriculture, Hydroponics and Aeroponics Gain the Knowledge of various types and features of Greenhouse and its importance. Understand the economics of Greenhouse System Gain the ability to design a Greenhouse System. 	
Unit 1 Introduction to Greenhouse Technology	Introduction to Greenhouse Technology Introduction to agriculture and Agricultural system, History of Greenhouse, Concept of Greenhouse technology, Importance and Features of Greenhouse, Types of Greenhouse, Advantages of Greenhouse over Traditional Agriculture Systems	15 lectures
Unit 2 Features of Greenhouse and Advanced Protected Agricultural System	Plant Responses to Greenhouse Environment, Environmental Control inside Greenhouse, Construction of Typical Greenhouse, Covering and Construction Materials of Greenhouse, Growth media, Irrigation, Ventilation, shading, cooling, and Heating system of Greenhouse, Economics of Greenhouse Production, Computer controlled Greenhouse, Concept of Hydroponics, Aeroponics and Precision Agriculture.	15 lectures

Reference:

- 1. Greenhouse Technology, 2nd Edition, K RadhaManohar, C. igathenathane. 2. Greenhouse Technology, Arupratan Ghosh

Laboratory Sessions

Green House Technology

1	Visit to Greenhouse facility and submission of field visit report.
2	Design a low cost Greenhouse facility
3	Design a high cost Greenhouse facility with advanced equipment
4	In-house set up of Hydroponics

SEMESTER-II

F.Y.B.Sc Biotechnology (Honours) Proposed Semester I Syllabus 2023-24

Major / Minor

Paper Name: Cell Biology & Genetics

Paper Code: BT201 No. of credits: 4

Course Outcome	Student will be able to –	No. of lectures
Course Outcome	CO-1 - Understand the difference between prokaryotic	No. of fectures
	and eukaryotic cell	
	CO-2 - Understand the principles of cellular transport	
	&its role in different processes in body.	
	CO-3 – Understand the structures of cell organelles and	
	& its role.	
	CO-4 - Understand basic foundation in field of genetics	
	with emphasis on laws of inheritance	
Unit 1	Ultrastructure of Prokaryotic cell: Concept of Cell	
Cell & Cell	Shape and Size, Detail structure of Slime Layer,	
Organelles	Capsule, Flagella, Pilli, Cell Wall (Gram Positive and	15 Lectures
	Negative), Cell membrane, Cytoplasm and Genetic	
	Material Storage Bodies and Spores.	
	Ultrastructure of Eukaryotic Cell: Plasma membrane,	
	Cytoplasmic Matrix, Microfilaments, Intermediate	
	Filaments, and Microtubules Organelles of the	
	Biosynthetic- Secretory and Endocytic Pathways –	
	Endoplasmic Reticulum & Golgi Apparatus, Lysosome,	
	Endocytosis, Phagocytosis, Autophagy, Proteasome	
	Eukaryotic Ribosomes, Mitochondria and Chloroplasts,	
	Nucleus –Nuclear Structure, Nucleolus External Cell	
	Coverings: Cilia And Flagella, Comparison Of	
	Prokaryotic And Eukaryotic cell	
Unit 2	Overview of cell cycle, mitosis and meiosis, Structure	
Cell Division and	and shapes of metaphase chromosomes, Histone and	
Study of	non-histone proteins, Nucleosome and packaging of	15 Lectures
Chromosomes	DNA into chromosome, Chromosome banding.	10 20000100
	Karyotype analysis (Normal human karyotype),	
	Study of genetic abnormalities- Turnerssyndrome,	
	Klinefelter syndrome, Down syndrome, Cri-du-chat,	
	Philadelphia chromosome,	
	Sex determination, Dosages compensation.	
Unit-3	Terminologies, Monohybrid Cross: Principle of	
Mendelian	Dominance and Segregation.	
Genetics	Dihybrid Cross: Principle of Independent Assortment,	15 Lectures
Geneucs	Punnett Square, Extension of	10 110000100
	Mendelian Genetics, Incomplete Dominance and Co-	
	Mendenan deneties, incomplete Dominance and Co-	

dominance. Multiple Alleles, Allelic series, Gene Interaction, Epistasis- Dominant and recessive epistasis, Environmental effect on the expression of the Human genes, Mendel's Principle in Human Genetics - Pedigree analysis, characteristics of human autosomal and sex-linked traits, Problems based on monohybrid, dihybrid cross and pedigree analysis.	
---	--

Cell Biology & Genetics-References

- 1. Cell & Molecular Biology, Gerald Karp, 6th Edition
- 2. The Cell by Cooper and Hausman, 4th edition.
- 3. Genetics by Peter Russell, 5th Edition
- 4. iGenetics: A Molecular Approach by Russell, 3rd Edition
- 5. Concepts of Genetics by William S. Klug and Michael R. Cummings, 7th Edition

Laboratory Sessions

Cell Biology & Genetics

1	Staining techniques: Monochrome staining, Gram staining
2	Capsule and Endospore staining
3	Endocytosis and Exocytosis
4.	Mitosis in onion root tip
5.	Meiosis in Tradescantia flower bud (permanent slides)
6.	Qualitative test for nucleic acids (DNA & RNA)
7.	Problems based on Mendelian Genetics
8.	Problems based on Pedigree analysis
9.	ABO blood grouping
10.	Karyotype analysis of normal male and female
11.	Karyotype analysis of different human syndromes
12.	Problems based on two point and three point cross

Open Elective (OE)

Paper Name: Food Adulteration & Safety

Paper Code: BT 202 No. of credits: 4

Course	Student will be able to –	No. of lectures
Outcome	CO1:Understand the effect of food adulteration	
	CO2: Know commonly used adulterants	
	CO3: Concept of sanitation and hygienic food	
	production	
	CO4: Different food safety law and its importance	
	CO5: Quality control and its importance	
Unit 1	Commonly used adulterants and adverse effects	15
Food	in: Tea leaves, Coriander and cumin powder,	lectures
Adulteration	Green vegetables, Arhar pulse, Black pepper,	
	Rice, Wheat, Coffee powder, Jaggery,	
	Asafoetida, Gram powder, Processed food,	
	Parched rice, Turmeric powder, Dry red chilli,	
	Sweet potato, Dry turmeric root, Mustard oil,	
	Edible oil, Soda lemonade, Milk, Sweet curd,	
	Rabdi, Ghee etc.	
Unit 2	Aspects of food safety- HACCP, GMP, role of	15 lectures
Food safety	FDA, Agmark, ISI, fssai Concept of sanitation	
-	and hygienic production of food Food Act, Food	
	rules and Quality control	

References:

- 1. Manual for Detection of the Common Food Adulterants, Edwin M Bruce
- 2. Food Microbiology, Frazier and Westhoff, Tata McGraw Hill Publishers, New Delhi
- 3. Nutrition science, B. Srilaxmi, New age international (P) Ltd
- 4. Quick test for some adulterants in food, Instruction manual- Part II, FSSAI
- 5. Restaurant X Food Safety Training Manual

Laboratory Sessions

Food Adulteration & Safety- Testing of commonly used adulterants in:

Sr. No.	Food Groups	Food Items
1	Beverages	Tea, coffee, soda lemonade etc
2	Pulses	Arhar pulse, moong, chick pea, matki etc
3	Grains	Rice, wheat, ragi,
4	Dairy & dairy products	Milk, curd, ghee, butter etc
5	Sweeteners	Sugar & Jaggery
6	Spices & condiments	Black pepper, asafoetida, turmeric, chilli, mustard,
		coriander powder etc
7	Fats	Edible oil

Vocational Skill Course (VSC)

Paper Name: Biofuel Production

Paper Code: BT 203 No. of credits: 2

110. 01 Cleuits. 2		
Course	Student will be able to –	No. of lectures
Outcome	CO1-Understand the various concepts related to	
	bioenergy and list the need for alternative fuels	
	and potential benefits of Biofuels.	
	CO2-Understand the industrial production of	
	Biodiesel and Bioethanol.	
Unit 1	Introduction to Bio- Energy The need for	15 lectures
Introduction to	alternative fuels, Composition of fossil	
Biofuels	fuels; Introduction to the major bio-	
	energy feed stocks; Potential benefits of	
	replacing fossil fuels with biofuel,	
	Biomass and Biogas.	
Unit 2	Introduction; fermentation of sugars to	15 lectures
Biodiesel and	ethanol, Sucrose; Synthesis of plants;	
Bioethanol	sugarcane; Bioethanol from starch;	
Production	Bioethanol from wheat; Bioethanol from	
	other grains. Second generation bio-	
	ethanol from cellulose and other cell wall	
	polysaccharides, plant cell wall. Bio-	
	ethanol from algal cell wall	
	polysaccharides. Biodiesel	
	manufacturing. Biodiesel feed stock,	
	soybean oil, oil seeds (canola oil, palm	
	oil), tallow and waste oil. The potential	
	first generation feed stock, potential	
	second generation biodiesel feedstock.	

REFERENCES:

- 1.Luque, R., Campelo, J.and Clark, J. Handbook of biofuels production, Woodhead Publishing Limited 2011
- 2. Gupta, V, K. and Tuohy, M, G. Biofuel Technologies, Springer, 2013
- 3. Moheimani, N. R., Boer, M, P, M, K, Parisa A. and Bahri, Biofuel and Biorefinery Technologies, Volume 2, Springer, 2015
- 4.Eckert, C, A. and Trinh, C, T. Biotechnology for Biofuel Production and Optimization, Elsevier, 2016
- 5..Bernardes, M, A, D, S. Biofuel production recent developments and prospects, InTech, 2011

Skill enhancement course (SEC)

Paper Name: Basics of Bioinformatics Paper Code: BT 204 No. of credits: 2

No. of credits: 2			
Course Outcome	Student will be able to –	No. of lectures	
	CO1-Gain an understanding of the basic concepts of		
	Bioinformatics		
	CO2Understand the tools used in Bioinformatics		
Unit 1	Biological Databases : Classification of	•	
Introduction to	Databases Raw and processed databases;		
Biological	Primary (NCBI), Secondary(PIR) and Tertiary		
Databases.	or Composite (KEGG) databases; Structure and		
	Sequence databases. Specialized Databases-	15 Lectures	
	Protein Pattern Databases; Protein Structure and		
	Classification Databases (CATH/SCOP)		
	Genome Information Resources		
	DNA Sequence Databases specialized Genomic		
	Resources. Protein Databases based on		
	Composition, Motifs and Patterns.		
	Protein Structure Visualization Software.		
Unit 2	BLAST and Sequence Alignment		
BLAST and	-		
Sequence	BLAST and Sequence Alignment: BLAST and	15 Lectures	
Alignment	its Types; Retrieving Sequence using BLAST.		
	Dain mias Alianmant		
	Pair wise Alignment		
	Identity and Cimilarity Clabal and I and		
	Identity and Similarity: Global and Local		
	Alignment; Pair wise Database Searching.		
	Multiple Sequence Alignment		
	Goal of Multiple sequence Alignment:		
	Computational Complexity, Manual methods,		
	Simultaneous methods, Progressive methods,		
	Database of Multiple Alignment Secondary		
	database searching, Analysis Packages:MSA		
	and phylogenetic trees.		
	0		

References:

1. Bioinformatics-methods and S.C. Rastogi, N Mendiratta, PHL learning Pvt. Ltd application Genomics, Proteomics, P.Rastogi 3rd edition and Drug Discovery

Laboratory Sessions

1	Familiarization with NCBI, EMBL, DDBJ, PIR, KEGG Database
2	Use of NCBI BLAST Tool
3	Pairwise and Multiple Sequence Alignment and Phylogeny
4	Classification of Proteins using CATH/SCOP
5	Visualization of PDB Molecules using RASMOL/RASWIN